You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
14 KiB
C++
460 lines
14 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkTransform.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
|
|
/**
|
|
* @class vtkTransform
|
|
* @brief describes linear transformations via a 4x4 matrix
|
|
*
|
|
* A vtkTransform can be used to describe the full range of linear (also
|
|
* known as affine) coordinate transformations in three dimensions,
|
|
* which are internally represented as a 4x4 homogeneous transformation
|
|
* matrix. When you create a new vtkTransform, it is always initialized
|
|
* to the identity transformation.
|
|
* <P>The SetInput() method allows you to set another transform,
|
|
* instead of the identity transform, to be the base transformation.
|
|
* There is a pipeline mechanism to ensure that when the input is
|
|
* modified, the current transformation will be updated accordingly.
|
|
* This pipeline mechanism is also supported by the Concatenate() method.
|
|
* <P>Most of the methods for manipulating this transformation,
|
|
* e.g. Translate, Rotate, and Concatenate, can operate in either
|
|
* PreMultiply (the default) or PostMultiply mode. In PreMultiply
|
|
* mode, the translation, concatenation, etc. will occur before any
|
|
* transformations which are represented by the current matrix. In
|
|
* PostMultiply mode, the additional transformation will occur after
|
|
* any transformations represented by the current matrix.
|
|
* <P>This class performs all of its operations in a right handed
|
|
* coordinate system with right handed rotations. Some other graphics
|
|
* libraries use left handed coordinate systems and rotations.
|
|
* @sa
|
|
* vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
|
|
* vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
|
|
* vtkImageReslice
|
|
*/
|
|
|
|
#ifndef vtkTransform_h
|
|
#define vtkTransform_h
|
|
|
|
#include "vtkCommonTransformsModule.h" // For export macro
|
|
#include "vtkLinearTransform.h"
|
|
|
|
#include "vtkMatrix4x4.h" // Needed for inline methods
|
|
|
|
class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform
|
|
{
|
|
public:
|
|
static vtkTransform* New();
|
|
vtkTypeMacro(vtkTransform, vtkLinearTransform);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Set the transformation to the identity transformation. If
|
|
* the transform has an Input, then the transformation will be
|
|
* reset so that it is the same as the Input.
|
|
*/
|
|
void Identity();
|
|
|
|
/**
|
|
* Invert the transformation. This will also set a flag so that
|
|
* the transformation will use the inverse of its Input, if an Input
|
|
* has been set.
|
|
*/
|
|
void Inverse() override;
|
|
|
|
//@{
|
|
/**
|
|
* Create a translation matrix and concatenate it with the current
|
|
* transformation according to PreMultiply or PostMultiply semantics.
|
|
*/
|
|
void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); }
|
|
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }
|
|
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Create a rotation matrix and concatenate it with the current
|
|
* transformation according to PreMultiply or PostMultiply semantics.
|
|
* The angle is in degrees, and (x,y,z) specifies the axis that the
|
|
* rotation will be performed around.
|
|
*/
|
|
void RotateWXYZ(double angle, double x, double y, double z)
|
|
{
|
|
this->Concatenation->Rotate(angle, x, y, z);
|
|
}
|
|
void RotateWXYZ(double angle, const double axis[3])
|
|
{
|
|
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
|
|
}
|
|
void RotateWXYZ(double angle, const float axis[3])
|
|
{
|
|
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Create a rotation matrix about the X, Y, or Z axis and concatenate
|
|
* it with the current transformation according to PreMultiply or
|
|
* PostMultiply semantics. The angle is expressed in degrees.
|
|
*/
|
|
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }
|
|
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }
|
|
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Create a scale matrix (i.e. set the diagonal elements to x, y, z)
|
|
* and concatenate it with the current transformation according to
|
|
* PreMultiply or PostMultiply semantics.
|
|
*/
|
|
void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); }
|
|
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }
|
|
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set the current matrix directly. Note: First, the current
|
|
* matrix is set to the identity, then the input matrix is concatenated.
|
|
*/
|
|
void SetMatrix(vtkMatrix4x4* matrix) { this->SetMatrix(*matrix->Element); }
|
|
void SetMatrix(const double elements[16])
|
|
{
|
|
this->Concatenation->Identity();
|
|
this->Concatenate(elements);
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Concatenates the matrix with the current transformation according
|
|
* to PreMultiply or PostMultiply semantics.
|
|
*/
|
|
void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); }
|
|
void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }
|
|
//@}
|
|
|
|
/**
|
|
* Concatenate the specified transform with the current transformation
|
|
* according to PreMultiply or PostMultiply semantics.
|
|
* The concatenation is pipelined, meaning that if any of the
|
|
* transformations are changed, even after Concatenate() is called,
|
|
* those changes will be reflected when you call TransformPoint().
|
|
*/
|
|
void Concatenate(vtkLinearTransform* transform);
|
|
|
|
/**
|
|
* Sets the internal state of the transform to PreMultiply. All subsequent
|
|
* operations will occur before those already represented in the
|
|
* current transformation. In homogeneous matrix notation, M = M*A where
|
|
* M is the current transformation matrix and A is the applied matrix.
|
|
* The default is PreMultiply.
|
|
*/
|
|
void PreMultiply()
|
|
{
|
|
if (this->Concatenation->GetPreMultiplyFlag())
|
|
{
|
|
return;
|
|
}
|
|
this->Concatenation->SetPreMultiplyFlag(1);
|
|
this->Modified();
|
|
}
|
|
|
|
/**
|
|
* Sets the internal state of the transform to PostMultiply. All subsequent
|
|
* operations will occur after those already represented in the
|
|
* current transformation. In homogeneous matrix notation, M = A*M where
|
|
* M is the current transformation matrix and A is the applied matrix.
|
|
* The default is PreMultiply.
|
|
*/
|
|
void PostMultiply()
|
|
{
|
|
if (!this->Concatenation->GetPreMultiplyFlag())
|
|
{
|
|
return;
|
|
}
|
|
this->Concatenation->SetPreMultiplyFlag(0);
|
|
this->Modified();
|
|
}
|
|
|
|
/**
|
|
* Get the total number of transformations that are linked into this
|
|
* one via Concatenate() operations or via SetInput().
|
|
*/
|
|
int GetNumberOfConcatenatedTransforms()
|
|
{
|
|
return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1);
|
|
}
|
|
|
|
//@{
|
|
/**
|
|
* Get one of the concatenated transformations as a vtkAbstractTransform.
|
|
* These transformations are applied, in series, every time the
|
|
* transformation of a coordinate occurs. This method is provided
|
|
* to make it possible to decompose a transformation into its
|
|
* constituents, for example to save a transformation to a file.
|
|
*/
|
|
vtkLinearTransform* GetConcatenatedTransform(int i)
|
|
{
|
|
vtkAbstractTransform* t;
|
|
if (this->Input == nullptr)
|
|
{
|
|
t = this->Concatenation->GetTransform(i);
|
|
}
|
|
else if (i < this->Concatenation->GetNumberOfPreTransforms())
|
|
{
|
|
t = this->Concatenation->GetTransform(i);
|
|
}
|
|
else if (i > this->Concatenation->GetNumberOfPreTransforms())
|
|
{
|
|
t = this->Concatenation->GetTransform(i - 1);
|
|
}
|
|
else if (this->GetInverseFlag())
|
|
{
|
|
t = this->Input->GetInverse();
|
|
}
|
|
else
|
|
{
|
|
t = this->Input;
|
|
}
|
|
return static_cast<vtkLinearTransform*>(t);
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Get the x, y, z orientation angles from the transformation matrix as an
|
|
* array of three floating point values.
|
|
*/
|
|
void GetOrientation(double orient[3]);
|
|
void GetOrientation(float orient[3])
|
|
{
|
|
double temp[3];
|
|
this->GetOrientation(temp);
|
|
orient[0] = static_cast<float>(temp[0]);
|
|
orient[1] = static_cast<float>(temp[1]);
|
|
orient[2] = static_cast<float>(temp[2]);
|
|
}
|
|
double* GetOrientation() VTK_SIZEHINT(3)
|
|
{
|
|
this->GetOrientation(this->ReturnValue);
|
|
return this->ReturnValue;
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* Convenience function to get the x, y, z orientation angles from
|
|
* a transformation matrix as an array of three floating point values.
|
|
*/
|
|
static void GetOrientation(double orient[3], vtkMatrix4x4* matrix);
|
|
|
|
//@{
|
|
/**
|
|
* Return the wxyz angle+axis representing the current orientation.
|
|
* The angle is in degrees and the axis is a unit vector.
|
|
*/
|
|
void GetOrientationWXYZ(double wxyz[4]);
|
|
void GetOrientationWXYZ(float wxyz[4])
|
|
{
|
|
double temp[4];
|
|
this->GetOrientationWXYZ(temp);
|
|
wxyz[0] = static_cast<float>(temp[0]);
|
|
wxyz[1] = static_cast<float>(temp[1]);
|
|
wxyz[2] = static_cast<float>(temp[2]);
|
|
wxyz[3] = static_cast<float>(temp[3]);
|
|
}
|
|
double* GetOrientationWXYZ() VTK_SIZEHINT(4)
|
|
{
|
|
this->GetOrientationWXYZ(this->ReturnValue);
|
|
return this->ReturnValue;
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Return the position from the current transformation matrix as an array
|
|
* of three floating point numbers. This is simply returning the translation
|
|
* component of the 4x4 matrix.
|
|
*/
|
|
void GetPosition(double pos[3]);
|
|
void GetPosition(float pos[3])
|
|
{
|
|
double temp[3];
|
|
this->GetPosition(temp);
|
|
pos[0] = static_cast<float>(temp[0]);
|
|
pos[1] = static_cast<float>(temp[1]);
|
|
pos[2] = static_cast<float>(temp[2]);
|
|
}
|
|
double* GetPosition() VTK_SIZEHINT(3)
|
|
{
|
|
this->GetPosition(this->ReturnValue);
|
|
return this->ReturnValue;
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Return the scale factors of the current transformation matrix as
|
|
* an array of three float numbers. These scale factors are not necessarily
|
|
* about the x, y, and z axes unless unless the scale transformation was
|
|
* applied before any rotations.
|
|
*/
|
|
void GetScale(double scale[3]);
|
|
void GetScale(float scale[3])
|
|
{
|
|
double temp[3];
|
|
this->GetScale(temp);
|
|
scale[0] = static_cast<float>(temp[0]);
|
|
scale[1] = static_cast<float>(temp[1]);
|
|
scale[2] = static_cast<float>(temp[2]);
|
|
}
|
|
double* GetScale() VTK_SIZEHINT(3)
|
|
{
|
|
this->GetScale(this->ReturnValue);
|
|
return this->ReturnValue;
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* Return a matrix which is the inverse of the current transformation
|
|
* matrix.
|
|
*/
|
|
void GetInverse(vtkMatrix4x4* inverse);
|
|
|
|
/**
|
|
* Return a matrix which is the transpose of the current transformation
|
|
* matrix. This is equivalent to the inverse if and only if the
|
|
* transformation is a pure rotation with no translation or scale.
|
|
*/
|
|
void GetTranspose(vtkMatrix4x4* transpose);
|
|
|
|
//@{
|
|
/**
|
|
* Set the input for this transformation. This will be used as the
|
|
* base transformation if it is set. This method allows you to build
|
|
* a transform pipeline: if the input is modified, then this transformation
|
|
* will automatically update accordingly. Note that the InverseFlag,
|
|
* controlled via Inverse(), determines whether this transformation
|
|
* will use the Input or the inverse of the Input.
|
|
*/
|
|
void SetInput(vtkLinearTransform* input);
|
|
vtkLinearTransform* GetInput() { return this->Input; }
|
|
//@}
|
|
|
|
/**
|
|
* Get the inverse flag of the transformation. This controls
|
|
* whether it is the Input or the inverse of the Input that
|
|
* is used as the base transformation. The InverseFlag is
|
|
* flipped every time Inverse() is called. The InverseFlag
|
|
* is off when a transform is first created.
|
|
*/
|
|
int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }
|
|
|
|
//@{
|
|
/**
|
|
* Pushes the current transformation onto the transformation stack.
|
|
*/
|
|
void Push()
|
|
{
|
|
if (this->Stack == nullptr)
|
|
{
|
|
this->Stack = vtkTransformConcatenationStack::New();
|
|
}
|
|
this->Stack->Push(&this->Concatenation);
|
|
this->Modified();
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Deletes the transformation on the top of the stack and sets the top
|
|
* to the next transformation on the stack.
|
|
*/
|
|
void Pop()
|
|
{
|
|
if (this->Stack == nullptr)
|
|
{
|
|
return;
|
|
}
|
|
this->Stack->Pop(&this->Concatenation);
|
|
this->Modified();
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* Check for self-reference. Will return true if concatenating
|
|
* with the specified transform, setting it to be our inverse,
|
|
* or setting it to be our input will create a circular reference.
|
|
* CircuitCheck is automatically called by SetInput(), SetInverse(),
|
|
* and Concatenate(vtkXTransform *). Avoid using this function,
|
|
* it is experimental.
|
|
*/
|
|
int CircuitCheck(vtkAbstractTransform* transform) override;
|
|
|
|
// Return an inverse transform which will always update itself
|
|
// to match this transform.
|
|
vtkAbstractTransform* GetInverse() { return vtkLinearTransform::GetInverse(); }
|
|
|
|
/**
|
|
* Make a new transform of the same type.
|
|
*/
|
|
vtkAbstractTransform* MakeTransform() override;
|
|
|
|
/**
|
|
* Override GetMTime to account for input and concatenation.
|
|
*/
|
|
vtkMTimeType GetMTime() override;
|
|
|
|
//@{
|
|
/**
|
|
* Use this method only if you wish to compute the transformation in
|
|
* homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint().
|
|
* This method calls this->GetMatrix()->MultiplyPoint().
|
|
*/
|
|
void MultiplyPoint(const float in[4], float out[4]) { this->GetMatrix()->MultiplyPoint(in, out); }
|
|
void MultiplyPoint(const double in[4], double out[4])
|
|
{
|
|
this->GetMatrix()->MultiplyPoint(in, out);
|
|
}
|
|
//@}
|
|
|
|
protected:
|
|
vtkTransform();
|
|
~vtkTransform() override;
|
|
|
|
void InternalDeepCopy(vtkAbstractTransform* t) override;
|
|
|
|
void InternalUpdate() override;
|
|
|
|
vtkLinearTransform* Input;
|
|
vtkTransformConcatenation* Concatenation;
|
|
vtkTransformConcatenationStack* Stack;
|
|
|
|
// this allows us to check whether people have been fooling
|
|
// around with our matrix
|
|
vtkMTimeType MatrixUpdateMTime;
|
|
|
|
float Point[4];
|
|
double DoublePoint[4];
|
|
double ReturnValue[4];
|
|
|
|
private:
|
|
vtkTransform(const vtkTransform&) = delete;
|
|
void operator=(const vtkTransform&) = delete;
|
|
};
|
|
|
|
#endif
|