You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

460 lines
14 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkTransform.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkTransform
* @brief describes linear transformations via a 4x4 matrix
*
* A vtkTransform can be used to describe the full range of linear (also
* known as affine) coordinate transformations in three dimensions,
* which are internally represented as a 4x4 homogeneous transformation
* matrix. When you create a new vtkTransform, it is always initialized
* to the identity transformation.
* <P>The SetInput() method allows you to set another transform,
* instead of the identity transform, to be the base transformation.
* There is a pipeline mechanism to ensure that when the input is
* modified, the current transformation will be updated accordingly.
* This pipeline mechanism is also supported by the Concatenate() method.
* <P>Most of the methods for manipulating this transformation,
* e.g. Translate, Rotate, and Concatenate, can operate in either
* PreMultiply (the default) or PostMultiply mode. In PreMultiply
* mode, the translation, concatenation, etc. will occur before any
* transformations which are represented by the current matrix. In
* PostMultiply mode, the additional transformation will occur after
* any transformations represented by the current matrix.
* <P>This class performs all of its operations in a right handed
* coordinate system with right handed rotations. Some other graphics
* libraries use left handed coordinate systems and rotations.
* @sa
* vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
* vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
* vtkImageReslice
*/
#ifndef vtkTransform_h
#define vtkTransform_h
#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkLinearTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform
{
public:
static vtkTransform* New();
vtkTypeMacro(vtkTransform, vtkLinearTransform);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set the transformation to the identity transformation. If
* the transform has an Input, then the transformation will be
* reset so that it is the same as the Input.
*/
void Identity();
/**
* Invert the transformation. This will also set a flag so that
* the transformation will use the inverse of its Input, if an Input
* has been set.
*/
void Inverse() override;
//@{
/**
* Create a translation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
*/
void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); }
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }
//@}
//@{
/**
* Create a rotation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
* The angle is in degrees, and (x,y,z) specifies the axis that the
* rotation will be performed around.
*/
void RotateWXYZ(double angle, double x, double y, double z)
{
this->Concatenation->Rotate(angle, x, y, z);
}
void RotateWXYZ(double angle, const double axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
void RotateWXYZ(double angle, const float axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
//@}
//@{
/**
* Create a rotation matrix about the X, Y, or Z axis and concatenate
* it with the current transformation according to PreMultiply or
* PostMultiply semantics. The angle is expressed in degrees.
*/
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }
//@}
//@{
/**
* Create a scale matrix (i.e. set the diagonal elements to x, y, z)
* and concatenate it with the current transformation according to
* PreMultiply or PostMultiply semantics.
*/
void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); }
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }
//@}
//@{
/**
* Set the current matrix directly. Note: First, the current
* matrix is set to the identity, then the input matrix is concatenated.
*/
void SetMatrix(vtkMatrix4x4* matrix) { this->SetMatrix(*matrix->Element); }
void SetMatrix(const double elements[16])
{
this->Concatenation->Identity();
this->Concatenate(elements);
}
//@}
//@{
/**
* Concatenates the matrix with the current transformation according
* to PreMultiply or PostMultiply semantics.
*/
void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); }
void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }
//@}
/**
* Concatenate the specified transform with the current transformation
* according to PreMultiply or PostMultiply semantics.
* The concatenation is pipelined, meaning that if any of the
* transformations are changed, even after Concatenate() is called,
* those changes will be reflected when you call TransformPoint().
*/
void Concatenate(vtkLinearTransform* transform);
/**
* Sets the internal state of the transform to PreMultiply. All subsequent
* operations will occur before those already represented in the
* current transformation. In homogeneous matrix notation, M = M*A where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PreMultiply()
{
if (this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(1);
this->Modified();
}
/**
* Sets the internal state of the transform to PostMultiply. All subsequent
* operations will occur after those already represented in the
* current transformation. In homogeneous matrix notation, M = A*M where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PostMultiply()
{
if (!this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(0);
this->Modified();
}
/**
* Get the total number of transformations that are linked into this
* one via Concatenate() operations or via SetInput().
*/
int GetNumberOfConcatenatedTransforms()
{
return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1);
}
//@{
/**
* Get one of the concatenated transformations as a vtkAbstractTransform.
* These transformations are applied, in series, every time the
* transformation of a coordinate occurs. This method is provided
* to make it possible to decompose a transformation into its
* constituents, for example to save a transformation to a file.
*/
vtkLinearTransform* GetConcatenatedTransform(int i)
{
vtkAbstractTransform* t;
if (this->Input == nullptr)
{
t = this->Concatenation->GetTransform(i);
}
else if (i < this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i);
}
else if (i > this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i - 1);
}
else if (this->GetInverseFlag())
{
t = this->Input->GetInverse();
}
else
{
t = this->Input;
}
return static_cast<vtkLinearTransform*>(t);
}
//@}
//@{
/**
* Get the x, y, z orientation angles from the transformation matrix as an
* array of three floating point values.
*/
void GetOrientation(double orient[3]);
void GetOrientation(float orient[3])
{
double temp[3];
this->GetOrientation(temp);
orient[0] = static_cast<float>(temp[0]);
orient[1] = static_cast<float>(temp[1]);
orient[2] = static_cast<float>(temp[2]);
}
double* GetOrientation() VTK_SIZEHINT(3)
{
this->GetOrientation(this->ReturnValue);
return this->ReturnValue;
}
//@}
/**
* Convenience function to get the x, y, z orientation angles from
* a transformation matrix as an array of three floating point values.
*/
static void GetOrientation(double orient[3], vtkMatrix4x4* matrix);
//@{
/**
* Return the wxyz angle+axis representing the current orientation.
* The angle is in degrees and the axis is a unit vector.
*/
void GetOrientationWXYZ(double wxyz[4]);
void GetOrientationWXYZ(float wxyz[4])
{
double temp[4];
this->GetOrientationWXYZ(temp);
wxyz[0] = static_cast<float>(temp[0]);
wxyz[1] = static_cast<float>(temp[1]);
wxyz[2] = static_cast<float>(temp[2]);
wxyz[3] = static_cast<float>(temp[3]);
}
double* GetOrientationWXYZ() VTK_SIZEHINT(4)
{
this->GetOrientationWXYZ(this->ReturnValue);
return this->ReturnValue;
}
//@}
//@{
/**
* Return the position from the current transformation matrix as an array
* of three floating point numbers. This is simply returning the translation
* component of the 4x4 matrix.
*/
void GetPosition(double pos[3]);
void GetPosition(float pos[3])
{
double temp[3];
this->GetPosition(temp);
pos[0] = static_cast<float>(temp[0]);
pos[1] = static_cast<float>(temp[1]);
pos[2] = static_cast<float>(temp[2]);
}
double* GetPosition() VTK_SIZEHINT(3)
{
this->GetPosition(this->ReturnValue);
return this->ReturnValue;
}
//@}
//@{
/**
* Return the scale factors of the current transformation matrix as
* an array of three float numbers. These scale factors are not necessarily
* about the x, y, and z axes unless unless the scale transformation was
* applied before any rotations.
*/
void GetScale(double scale[3]);
void GetScale(float scale[3])
{
double temp[3];
this->GetScale(temp);
scale[0] = static_cast<float>(temp[0]);
scale[1] = static_cast<float>(temp[1]);
scale[2] = static_cast<float>(temp[2]);
}
double* GetScale() VTK_SIZEHINT(3)
{
this->GetScale(this->ReturnValue);
return this->ReturnValue;
}
//@}
/**
* Return a matrix which is the inverse of the current transformation
* matrix.
*/
void GetInverse(vtkMatrix4x4* inverse);
/**
* Return a matrix which is the transpose of the current transformation
* matrix. This is equivalent to the inverse if and only if the
* transformation is a pure rotation with no translation or scale.
*/
void GetTranspose(vtkMatrix4x4* transpose);
//@{
/**
* Set the input for this transformation. This will be used as the
* base transformation if it is set. This method allows you to build
* a transform pipeline: if the input is modified, then this transformation
* will automatically update accordingly. Note that the InverseFlag,
* controlled via Inverse(), determines whether this transformation
* will use the Input or the inverse of the Input.
*/
void SetInput(vtkLinearTransform* input);
vtkLinearTransform* GetInput() { return this->Input; }
//@}
/**
* Get the inverse flag of the transformation. This controls
* whether it is the Input or the inverse of the Input that
* is used as the base transformation. The InverseFlag is
* flipped every time Inverse() is called. The InverseFlag
* is off when a transform is first created.
*/
int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }
//@{
/**
* Pushes the current transformation onto the transformation stack.
*/
void Push()
{
if (this->Stack == nullptr)
{
this->Stack = vtkTransformConcatenationStack::New();
}
this->Stack->Push(&this->Concatenation);
this->Modified();
}
//@}
//@{
/**
* Deletes the transformation on the top of the stack and sets the top
* to the next transformation on the stack.
*/
void Pop()
{
if (this->Stack == nullptr)
{
return;
}
this->Stack->Pop(&this->Concatenation);
this->Modified();
}
//@}
/**
* Check for self-reference. Will return true if concatenating
* with the specified transform, setting it to be our inverse,
* or setting it to be our input will create a circular reference.
* CircuitCheck is automatically called by SetInput(), SetInverse(),
* and Concatenate(vtkXTransform *). Avoid using this function,
* it is experimental.
*/
int CircuitCheck(vtkAbstractTransform* transform) override;
// Return an inverse transform which will always update itself
// to match this transform.
vtkAbstractTransform* GetInverse() { return vtkLinearTransform::GetInverse(); }
/**
* Make a new transform of the same type.
*/
vtkAbstractTransform* MakeTransform() override;
/**
* Override GetMTime to account for input and concatenation.
*/
vtkMTimeType GetMTime() override;
//@{
/**
* Use this method only if you wish to compute the transformation in
* homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint().
* This method calls this->GetMatrix()->MultiplyPoint().
*/
void MultiplyPoint(const float in[4], float out[4]) { this->GetMatrix()->MultiplyPoint(in, out); }
void MultiplyPoint(const double in[4], double out[4])
{
this->GetMatrix()->MultiplyPoint(in, out);
}
//@}
protected:
vtkTransform();
~vtkTransform() override;
void InternalDeepCopy(vtkAbstractTransform* t) override;
void InternalUpdate() override;
vtkLinearTransform* Input;
vtkTransformConcatenation* Concatenation;
vtkTransformConcatenationStack* Stack;
// this allows us to check whether people have been fooling
// around with our matrix
vtkMTimeType MatrixUpdateMTime;
float Point[4];
double DoublePoint[4];
double ReturnValue[4];
private:
vtkTransform(const vtkTransform&) = delete;
void operator=(const vtkTransform&) = delete;
};
#endif