You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

166 lines
6.2 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticWedge.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticWedge
* @brief cell represents a parabolic, 15-node isoparametric wedge
*
* vtkQuadraticWedge is a concrete implementation of vtkNonLinearCell to
* represent a three-dimensional, 15-node isoparametric parabolic
* wedge. The interpolation is the standard finite element, quadratic
* isoparametric shape function. The cell includes a mid-edge node. The
* ordering of the fifteen points defining the cell is point ids (0-5,6-14)
* where point ids 0-5 are the six corner vertices of the wedge, defined
* analogously to the six points in vtkWedge (points (0,1,2) form the base of
* the wedge which, using the right hand rule, forms a triangle whose normal
* points away from the triangular face (3,4,5)); followed by nine midedge
* nodes (6-14). Note that these midedge nodes correspond lie on the edges
* defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3), (1,4), (2,5).
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid
*/
#ifndef vtkQuadraticWedge_h
#define vtkQuadraticWedge_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkQuadraticTriangle;
class vtkWedge;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticWedge : public vtkNonLinearCell
{
public:
static vtkQuadraticWedge* New();
vtkTypeMacro(vtkQuadraticWedge, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_WEDGE; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 9; }
int GetNumberOfFaces() override { return 5; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
//@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic hexahedron using scalar value provided. Like
* contouring, except that it cuts the hex to produce linear
* tetrahedron.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Return the center of the quadratic wedge in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[15]);
static void InterpolationDerivs(const double pcoords[3], double derivs[45]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[15]) override
{
vtkQuadraticWedge::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[45]) override
{
vtkQuadraticWedge::InterpolationDerivs(pcoords, derivs);
}
//@}
//@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
static const vtkIdType* GetFaceArray(vtkIdType faceId);
//@}
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[45]);
protected:
vtkQuadraticWedge();
~vtkQuadraticWedge() override;
vtkQuadraticEdge* Edge;
vtkQuadraticTriangle* TriangleFace;
vtkQuadraticQuad* Face;
vtkWedge* Wedge;
vtkPointData* PointData;
vtkCellData* CellData;
vtkDoubleArray* CellScalars;
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
void Subdivide(
vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars);
private:
vtkQuadraticWedge(const vtkQuadraticWedge&) = delete;
void operator=(const vtkQuadraticWedge&) = delete;
};
//----------------------------------------------------------------------------
// Return the center of the quadratic wedge in parametric coordinates.
inline int vtkQuadraticWedge::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 1. / 3;
pcoords[2] = 0.5;
return 0;
}
#endif