You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
13 KiB
C++
360 lines
13 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkPolyhedron.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkPolyhedron
|
|
* @brief a 3D cell defined by a set of polygonal faces
|
|
*
|
|
* vtkPolyhedron is a concrete implementation that represents a 3D cell
|
|
* defined by a set of polygonal faces. The polyhedron should be watertight,
|
|
* non-self-intersecting and manifold (each edge is used twice).
|
|
*
|
|
* Interpolation functions and weights are defined / computed using the
|
|
* method of Mean Value Coordinates (MVC). See the VTK class
|
|
* vtkMeanValueCoordinatesInterpolator for more information.
|
|
*
|
|
* The class does not require the polyhedron to be convex. However, the
|
|
* polygonal faces must be planar. Non-planar polygonal faces will
|
|
* definitely cause problems, especially in severely warped situations.
|
|
*
|
|
* @sa
|
|
* vtkCell3D vtkConvecPointSet vtkMeanValueCoordinatesInterpolator
|
|
*/
|
|
|
|
#ifndef vtkPolyhedron_h
|
|
#define vtkPolyhedron_h
|
|
|
|
#include "vtkCell3D.h"
|
|
#include "vtkCommonDataModelModule.h" // For export macro
|
|
|
|
class vtkIdTypeArray;
|
|
class vtkCellArray;
|
|
class vtkTriangle;
|
|
class vtkQuad;
|
|
class vtkTetra;
|
|
class vtkPolygon;
|
|
class vtkLine;
|
|
class vtkPointIdMap;
|
|
class vtkIdToIdVectorMapType;
|
|
class vtkIdToIdMapType;
|
|
class vtkEdgeTable;
|
|
class vtkPolyData;
|
|
class vtkCellLocator;
|
|
class vtkGenericCell;
|
|
class vtkPointLocator;
|
|
|
|
class VTKCOMMONDATAMODEL_EXPORT vtkPolyhedron : public vtkCell3D
|
|
{
|
|
public:
|
|
//@{
|
|
/**
|
|
* Standard new methods.
|
|
*/
|
|
static vtkPolyhedron* New();
|
|
vtkTypeMacro(vtkPolyhedron, vtkCell3D);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* See vtkCell3D API for description of these methods.
|
|
* @warning These method are unimplemented in vtkPolyhedron
|
|
*/
|
|
void GetEdgePoints(vtkIdType vtkNotUsed(edgeId), const vtkIdType*& vtkNotUsed(pts)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetEdgePoints Not Implemented");
|
|
}
|
|
// @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
|
|
VTK_LEGACY(void GetEdgePoints(int vtkNotUsed(edgeId), int*& vtkNotUsed(pts)) override {
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetEdgePoints Not Implemented. "
|
|
<< "Also note that this signature is deprecated. "
|
|
<< "Please use GetEdgePoints(vtkIdType, const vtkIdType*& instead");
|
|
});
|
|
vtkIdType GetFacePoints(vtkIdType vtkNotUsed(faceId), const vtkIdType*& vtkNotUsed(pts)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetFacePoints Not Implemented");
|
|
return 0;
|
|
}
|
|
// @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
|
|
VTK_LEGACY(void GetFacePoints(int vtkNotUsed(faceId), int*& vtkNotUsed(pts)) override {
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetFacePoints Not Implemented. "
|
|
<< "Also note that this signature is deprecated. "
|
|
<< "Please use GetFacePoints(vtkIdType, const vtkIdType*& instead");
|
|
});
|
|
void GetEdgeToAdjacentFaces(
|
|
vtkIdType vtkNotUsed(edgeId), const vtkIdType*& vtkNotUsed(pts)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetEdgeToAdjacentFaces Not Implemented");
|
|
}
|
|
vtkIdType GetFaceToAdjacentFaces(
|
|
vtkIdType vtkNotUsed(faceId), const vtkIdType*& vtkNotUsed(faceIds)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetFaceToAdjacentFaces Not Implemented");
|
|
return 0;
|
|
}
|
|
vtkIdType GetPointToIncidentEdges(
|
|
vtkIdType vtkNotUsed(pointId), const vtkIdType*& vtkNotUsed(edgeIds)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetPointToIncidentEdges Not Implemented");
|
|
return 0;
|
|
}
|
|
vtkIdType GetPointToIncidentFaces(
|
|
vtkIdType vtkNotUsed(pointId), const vtkIdType*& vtkNotUsed(faceIds)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetPointToIncidentFaces Not Implemented");
|
|
return 0;
|
|
}
|
|
vtkIdType GetPointToOneRingPoints(
|
|
vtkIdType vtkNotUsed(pointId), const vtkIdType*& vtkNotUsed(pts)) override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetPointToOneRingPoints Not Implemented");
|
|
return 0;
|
|
}
|
|
bool GetCentroid(double vtkNotUsed(centroid)[3]) const override
|
|
{
|
|
vtkWarningMacro(<< "vtkPolyhedron::GetCentroid Not Implemented");
|
|
return 0;
|
|
}
|
|
//@}
|
|
|
|
/**
|
|
* See vtkCell3D API for description of this method.
|
|
*/
|
|
double* GetParametricCoords() override;
|
|
|
|
/**
|
|
* See the vtkCell API for descriptions of these methods.
|
|
*/
|
|
int GetCellType() override { return VTK_POLYHEDRON; }
|
|
|
|
/**
|
|
* This cell requires that it be initialized prior to access.
|
|
*/
|
|
int RequiresInitialization() override { return 1; }
|
|
void Initialize() override;
|
|
|
|
//@{
|
|
/**
|
|
* A polyhedron is represented internally by a set of polygonal faces.
|
|
* These faces can be processed to explicitly determine edges.
|
|
*/
|
|
int GetNumberOfEdges() override;
|
|
vtkCell* GetEdge(int) override;
|
|
int GetNumberOfFaces() override;
|
|
vtkCell* GetFace(int faceId) override;
|
|
//@}
|
|
|
|
/**
|
|
* Satisfy the vtkCell API. This method contours the input polyhedron and outputs
|
|
* a polygon. When the result polygon is not planar, it will be triangulated.
|
|
* The current implementation assumes water-tight polyhedron cells.
|
|
*/
|
|
void Contour(double value, vtkDataArray* scalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
|
|
|
/**
|
|
* Satisfy the vtkCell API. This method clips the input polyhedron and outputs
|
|
* a new polyhedron. The face information of the output polyhedron is encoded
|
|
* in the output vtkCellArray using a special format:
|
|
* CellLength [nCellFaces, nFace0Pts, i, j, k, nFace1Pts, i, j, k, ...].
|
|
* Use the static method vtkUnstructuredGrid::DecomposePolyhedronCellArray
|
|
* to convert it into a standard format. Note: the algorithm assumes water-tight
|
|
* polyhedron cells.
|
|
*/
|
|
void Clip(double value, vtkDataArray* scalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* connectivity, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
|
|
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
|
|
|
|
/**
|
|
* Satisfy the vtkCell API. The subId is ignored and zero is always
|
|
* returned. The parametric coordinates pcoords are normalized values in
|
|
* the bounding box of the polyhedron. The weights are determined by
|
|
* evaluating the MVC coordinates. The dist is always zero if the point x[3]
|
|
* is inside the polyhedron; otherwise it's the distance to the surface.
|
|
*/
|
|
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
|
|
double& dist2, double weights[]) override;
|
|
|
|
/**
|
|
* The inverse of EvaluatePosition. Note the weights should be the MVC
|
|
* weights.
|
|
*/
|
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
|
|
|
/**
|
|
* Intersect the line (p1,p2) with a given tolerance tol to determine a
|
|
* point of intersection x[3] with parametric coordinate t along the
|
|
* line. The parametric coordinates are returned as well (subId can be
|
|
* ignored). Returns true if the line intersects a face.
|
|
*/
|
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
|
double pcoords[3], int& subId) override;
|
|
|
|
/**
|
|
* Use vtkOrderedTriangulator to tetrahedralize the polyhedron mesh. This
|
|
* method works well for a convex polyhedron but may return wrong result
|
|
* in a concave case.
|
|
* Once triangulation has been performed, the results are saved in ptIds and
|
|
* pts. The ptIds is a vtkIdList with 4xn number of ids (n is the number of
|
|
* result tetrahedrons). The first 4 represent the point ids of the first
|
|
* tetrahedron, the second 4 represents the point ids of the second tetrahedron
|
|
* and so on. The point ids represent global dataset ids.
|
|
* The points of result tetrahedons are stored in pts. Note that there are
|
|
* 4xm output points (m is the number of points in the original polyhedron).
|
|
* A point may be stored multiple times when it is shared by more than one
|
|
* tetrahedrons. The points stored in pts are ordered the same as they are
|
|
* listed in ptIds.
|
|
*/
|
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
|
|
|
/**
|
|
* Computes derivatives at the point specified by the parameter coordinate.
|
|
* Current implementation uses all vertices and subId is not used.
|
|
* To accelerate the speed, the future implementation can triangulate and
|
|
* extract the local tetrahedron from subId and pcoords, then evaluate
|
|
* derivatives on the local tetrahedron.
|
|
*/
|
|
void Derivatives(
|
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
|
|
|
/**
|
|
* Find the boundary face closest to the point defined by the pcoords[3]
|
|
* and subId of the cell (subId can be ignored).
|
|
*/
|
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
|
|
|
/**
|
|
* Return the center of the cell in parametric coordinates. In this cell,
|
|
* the center of the bounding box is returned.
|
|
*/
|
|
int GetParametricCenter(double pcoords[3]) override;
|
|
|
|
/**
|
|
* A polyhedron is a full-fledged primary cell.
|
|
*/
|
|
int IsPrimaryCell() override { return 1; }
|
|
|
|
//@{
|
|
/**
|
|
* Compute the interpolation functions/derivatives
|
|
* (aka shape functions/derivatives). Here we use the MVC calculation
|
|
* process to compute the interpolation functions.
|
|
*/
|
|
void InterpolateFunctions(const double x[3], double* sf) override;
|
|
void InterpolateDerivs(const double x[3], double* derivs) override;
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Methods supporting the definition of faces. Note that the GetFaces()
|
|
* returns a list of faces in vtkCellArray form; use the method
|
|
* GetNumberOfFaces() to determine the number of faces in the list.
|
|
* The SetFaces() method is also in vtkCellArray form, except that it
|
|
* begins with a leading count indicating the total number of faces in
|
|
* the list.
|
|
*/
|
|
int RequiresExplicitFaceRepresentation() override { return 1; }
|
|
void SetFaces(vtkIdType* faces) override;
|
|
vtkIdType* GetFaces() override;
|
|
//@}
|
|
|
|
/**
|
|
* A method particular to vtkPolyhedron. It determines whether a point x[3]
|
|
* is inside the polyhedron or not (returns 1 is the point is inside, 0
|
|
* otherwise). The tolerance is expressed in normalized space; i.e., a
|
|
* fraction of the size of the bounding box.
|
|
*/
|
|
int IsInside(const double x[3], double tolerance);
|
|
|
|
/**
|
|
* Determine whether or not a polyhedron is convex. This method is adapted
|
|
* from Devillers et al., "Checking the Convexity of Polytopes and the
|
|
* Planarity of Subdivisions", Computational Geometry, Volume 11, Issues
|
|
* 3 - 4, December 1998, Pages 187 - 208.
|
|
*/
|
|
bool IsConvex();
|
|
|
|
/**
|
|
* Construct polydata if no one exist, then return this->PolyData
|
|
*/
|
|
vtkPolyData* GetPolyData();
|
|
|
|
protected:
|
|
vtkPolyhedron();
|
|
~vtkPolyhedron() override;
|
|
|
|
// Internal classes for supporting operations on this cell
|
|
vtkLine* Line;
|
|
vtkTriangle* Triangle;
|
|
vtkQuad* Quad;
|
|
vtkPolygon* Polygon;
|
|
vtkTetra* Tetra;
|
|
vtkIdTypeArray* GlobalFaces; // these are numbered in global id space
|
|
vtkIdTypeArray* FaceLocations;
|
|
|
|
// vtkCell has the data members Points (x,y,z coordinates) and PointIds
|
|
// (global cell ids corresponding to cell canonical numbering (0,1,2,....)).
|
|
// These data members are implicitly organized in canonical space, i.e., where
|
|
// the cell point ids are (0,1,...,npts-1). The PointIdMap maps global point id
|
|
// back to these canonoical point ids.
|
|
vtkPointIdMap* PointIdMap;
|
|
|
|
// If edges are needed. Note that the edge numbering is in
|
|
// canonical space.
|
|
int EdgesGenerated; // true/false
|
|
vtkEdgeTable* EdgeTable; // keep track of all edges
|
|
vtkIdTypeArray* Edges; // edge pairs kept in this list, in canonical id space
|
|
vtkIdTypeArray* EdgeFaces; // face pairs that comprise each edge, with the
|
|
// same ordering as EdgeTable
|
|
int GenerateEdges(); // method populates the edge table and edge array
|
|
|
|
// If faces need renumbering into canonical numbering space these members
|
|
// are used. When initiallly loaded, the face numbering uses global dataset
|
|
// ids. Once renumbered, they are converted to canonical space.
|
|
vtkIdTypeArray* Faces; // these are numbered in canonical id space
|
|
int FacesGenerated;
|
|
void GenerateFaces();
|
|
|
|
// Bounds management
|
|
int BoundsComputed;
|
|
void ComputeBounds();
|
|
void ComputeParametricCoordinate(const double x[3], double pc[3]);
|
|
void ComputePositionFromParametricCoordinate(const double pc[3], double x[3]);
|
|
|
|
// Members for supporting geometric operations
|
|
int PolyDataConstructed;
|
|
vtkPolyData* PolyData;
|
|
vtkCellArray* Polys;
|
|
void ConstructPolyData();
|
|
int LocatorConstructed;
|
|
vtkCellLocator* CellLocator;
|
|
void ConstructLocator();
|
|
vtkIdList* CellIds;
|
|
vtkGenericCell* Cell;
|
|
|
|
private:
|
|
vtkPolyhedron(const vtkPolyhedron&) = delete;
|
|
void operator=(const vtkPolyhedron&) = delete;
|
|
};
|
|
|
|
//----------------------------------------------------------------------------
|
|
inline int vtkPolyhedron::GetParametricCenter(double pcoords[3])
|
|
{
|
|
pcoords[0] = pcoords[1] = pcoords[2] = 0.5;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|