You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

276 lines
11 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkPolygon.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPolygon
* @brief a cell that represents an n-sided polygon
*
* vtkPolygon is a concrete implementation of vtkCell to represent a 2D
* n-sided polygon. The polygons cannot have any internal holes, and cannot
* self-intersect. Define the polygon with n-points ordered in the counter-
* clockwise direction; do not repeat the last point.
*/
#ifndef vtkPolygon_h
#define vtkPolygon_h
#include "vtkCell.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkDoubleArray;
class vtkIdTypeArray;
class vtkLine;
class vtkPoints;
class vtkQuad;
class vtkTriangle;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkPolygon : public vtkCell
{
public:
static vtkPolygon* New();
vtkTypeMacro(vtkPolygon, vtkCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_POLYGON; }
int GetCellDimension() override { return 2; }
int GetNumberOfEdges() override { return this->GetNumberOfPoints(); }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int) override { return nullptr; }
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tris, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
int IsPrimaryCell() override { return 0; }
//@}
/**
* Compute the area of a polygon. This is a convenience function
* which simply calls static double ComputeArea(vtkPoints *p,
* vtkIdType numPts, vtkIdType *pts, double normal[3]);
* with the appropriate parameters from the instantiated vtkPolygon.
*/
double ComputeArea();
/**
* Compute the interpolation functions/derivatives.
* (aka shape functions/derivatives)
* Two interpolation algorithms are available: 1/r^2 and Mean Value
* Coordinate. The former is used by default. To use the second algorithm,
* set UseMVCInterpolation to be true.
* The function assumes the input point lies on the polygon plane without
* checking that.
*/
void InterpolateFunctions(const double x[3], double* sf) override;
//@{
/**
* Computes the unit normal to the polygon. If pts=nullptr, point indexing is
* assumed to be {0, 1, ..., numPts-1}.
*/
static void ComputeNormal(vtkPoints* p, int numPts, const vtkIdType* pts, double n[3]);
static void ComputeNormal(vtkPoints* p, double n[3]);
static void ComputeNormal(vtkIdTypeArray* ids, vtkPoints* pts, double n[3]);
//@}
/**
* Compute the polygon normal from an array of points. This version assumes
* that the polygon is convex, and looks for the first valid normal.
*/
static void ComputeNormal(int numPts, double* pts, double n[3]);
/**
* Determine whether or not a polygon is convex. This is a convenience
* function that simply calls static bool IsConvex(int numPts,
* vtkIdType *pts, vtkPoints *p) with the appropriate parameters from the
* instantiated vtkPolygon.
*/
bool IsConvex();
//@{
/**
* Determine whether or not a polygon is convex. If pts=nullptr, point indexing
* is assumed to be {0, 1, ..., numPts-1}.
*/
static bool IsConvex(vtkPoints* p, int numPts, vtkIdType* pts);
static bool IsConvex(vtkIdTypeArray* ids, vtkPoints* p);
static bool IsConvex(vtkPoints* p);
//@}
//@{
/**
* Compute the centroid of a set of points. Returns false if the computation
* is invalid (this occurs when numPts=0 or when ids is empty).
*/
static bool ComputeCentroid(vtkPoints* p, int numPts, const vtkIdType* pts, double centroid[3]);
static bool ComputeCentroid(vtkIdTypeArray* ids, vtkPoints* pts, double centroid[3]);
//@}
/**
* Compute the area of a polygon in 3D. The area is returned, as well as
* the normal (a side effect of using this method). If you desire to
* compute the area of a triangle, use vtkTriangleArea which is faster.
* If pts==nullptr, point indexing is supposed to be {0, 1, ..., numPts-1}.
* If you already have a vtkPolygon instantiated, a convenience function,
* ComputeArea() is provided.
*/
static double ComputeArea(vtkPoints* p, vtkIdType numPts, const vtkIdType* pts, double normal[3]);
/**
* Create a local s-t coordinate system for a polygon. The point p0 is
* the origin of the local system, p10 is s-axis vector, and p20 is the
* t-axis vector. (These are expressed in the modeling coordinate system and
* are vectors of dimension [3].) The values l20 and l20 are the lengths of
* the vectors p10 and p20, and n is the polygon normal.
*/
int ParameterizePolygon(
double p0[3], double p10[3], double& l10, double p20[3], double& l20, double n[3]);
/**
* Determine whether point is inside polygon. Function uses ray-casting
* to determine if point is inside polygon. Works for arbitrary polygon shape
* (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is.
* Can also return -1 to indicate degenerate polygon.
*/
static int PointInPolygon(double x[3], int numPts, double* pts, double bounds[6], double n[3]);
/**
* Triangulate this polygon. The user must provide the vtkIdList outTris.
* On output, the outTris list contains the ids of the points defining
* the triangulation. The ids are ordered into groups of three: each
* three-group defines one triangle.
*/
int Triangulate(vtkIdList* outTris);
/**
* Same as Triangulate(vtkIdList *outTris)
* but with a first pass to split the polygon into non-degenerate polygons.
*/
int NonDegenerateTriangulate(vtkIdList* outTris);
/**
* Triangulate polygon and enforce that the ratio of the smallest triangle
* area to the polygon area is greater than a user-defined tolerance. The user
* must provide the vtkIdList outTris. On output, the outTris list contains
* the ids of the points defining the triangulation. The ids are ordered into
* groups of three: each three-group defines one triangle.
*/
int BoundedTriangulate(vtkIdList* outTris, double tol);
/**
* Compute the distance of a point to a polygon. The closest point on
* the polygon is also returned. The bounds should be provided to
* accelerate the computation.
*/
static double DistanceToPolygon(
double x[3], int numPts, double* pts, double bounds[6], double closest[3]);
/**
* Method intersects two polygons. You must supply the number of points and
* point coordinates (npts, *pts) and the bounding box (bounds) of the two
* polygons. Also supply a tolerance squared for controlling
* error. The method returns 1 if there is an intersection, and 0 if
* not. A single point of intersection x[3] is also returned if there
* is an intersection.
*/
static int IntersectPolygonWithPolygon(int npts, double* pts, double bounds[6], int npts2,
double* pts2, double bounds2[3], double tol, double x[3]);
/**
* Intersect two convex 2D polygons to produce a line segment as output.
* The return status of the methods indicated no intersection (returns 0);
* a single point of intersection (returns 1); or a line segment (i.e., two
* points of intersection, returns 2). The points of intersection are
* returned in the arrays p0 and p1. If less than two points of
* intersection are generated then p1 and/or p0 may be
* indeterminiate. Finally, if the two convex polygons are parallel, then
* "0" is returned (i.e., no intersection) even if the triangles lie on one
* another.
*/
static int IntersectConvex2DCells(
vtkCell* cell1, vtkCell* cell2, double tol, double p0[3], double p1[3]);
//@{
/**
* Set/Get the flag indicating whether to use Mean Value Coordinate for the
* interpolation. If true, InterpolateFunctions() uses the Mean Value
* Coordinate to compute weights. Otherwise, the conventional 1/r^2 method
* is used. The UseMVCInterpolation parameter is set to false by default.
*/
vtkGetMacro(UseMVCInterpolation, bool);
vtkSetMacro(UseMVCInterpolation, bool);
//@}
protected:
vtkPolygon();
~vtkPolygon() override;
// Compute the interpolation functions using Mean Value Coordinate.
void InterpolateFunctionsUsingMVC(const double x[3], double* weights);
// variables used by instances of this class
double Tolerance; // Intersection tolerance
int SuccessfulTriangulation; // Stops recursive tri. if necessary
double Normal[3]; // polygon normal
vtkIdList* Tris;
vtkTriangle* Triangle;
vtkQuad* Quad;
vtkDoubleArray* TriScalars;
vtkLine* Line;
// Parameter indicating whether to use Mean Value Coordinate algorithm
// for interpolation. The parameter is false by default.
bool UseMVCInterpolation;
// Helper methods for triangulation------------------------------
/**
* A fast triangulation method. Uses recursive divide and
* conquer based on plane splitting to reduce loop into triangles.
* The cell (e.g., triangle) is presumed properly initialized (i.e.,
* Points and PointIds).
*/
int EarCutTriangulation();
/**
* A fast triangulation method. Uses recursive divide and
* conquer based on plane splitting to reduce loop into triangles.
* The cell (e.g., triangle) is presumed properly initialized (i.e.,
* Points and PointIds). Unlike EarCutTriangulation(), vertices are visited
* sequentially without preference to angle.
*/
int UnbiasedEarCutTriangulation(int seed);
private:
vtkPolygon(const vtkPolygon&) = delete;
void operator=(const vtkPolygon&) = delete;
};
#endif