You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

184 lines
5.8 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkPlane.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPlane
* @brief perform various plane computations
*
* vtkPlane provides methods for various plane computations. These include
* projecting points onto a plane, evaluating the plane equation, and
* returning plane normal. vtkPlane is a concrete implementation of the
* abstract class vtkImplicitFunction.
*/
#ifndef vtkPlane_h
#define vtkPlane_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkImplicitFunction.h"
class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction
{
public:
/**
* Construct plane passing through origin and normal to z-axis.
*/
static vtkPlane* New();
vtkTypeMacro(vtkPlane, vtkImplicitFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Evaluate plane equation for point x[3].
*/
using vtkImplicitFunction::EvaluateFunction;
void EvaluateFunction(vtkDataArray* input, vtkDataArray* output) override;
double EvaluateFunction(double x[3]) override;
//@}
/**
* Evaluate function gradient at point x[3].
*/
void EvaluateGradient(double x[3], double g[3]) override;
//@{
/**
* Set/get plane normal. Plane is defined by point and normal.
*/
vtkSetVector3Macro(Normal, double);
vtkGetVectorMacro(Normal, double, 3);
//@}
//@{
/**
* Set/get point through which plane passes. Plane is defined by point
* and normal.
*/
vtkSetVector3Macro(Origin, double);
vtkGetVectorMacro(Origin, double, 3);
//@}
/**
* Translate the plane in the direction of the normal by the
* distance specified. Negative values move the plane in the
* opposite direction.
*/
void Push(double distance);
//@{
/**
* Project a point x onto plane defined by origin and normal. The
* projected point is returned in xproj. NOTE : normal assumed to
* have magnitude 1.
*/
static void ProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
void ProjectPoint(const double x[3], double xproj[3]);
//@}
//@{
/**
* Project a vector v onto plane defined by origin and normal. The
* projected vector is returned in vproj.
*/
static void ProjectVector(
const double v[3], const double origin[3], const double normal[3], double vproj[3]);
void ProjectVector(const double v[3], double vproj[3]);
//@}
//@{
/**
* Project a point x onto plane defined by origin and normal. The
* projected point is returned in xproj. NOTE : normal does NOT have to
* have magnitude 1.
*/
static void GeneralizedProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
void GeneralizedProjectPoint(const double x[3], double xproj[3]);
//@}
/**
* Quick evaluation of plane equation n(x-origin)=0.
*/
static double Evaluate(double normal[3], double origin[3], double x[3]);
//@{
/**
* Return the distance of a point x to a plane defined by n(x-p0) = 0. The
* normal n[3] must be magnitude=1.
*/
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
double DistanceToPlane(double x[3]);
//@}
//@{
/**
* Given a line defined by the two points p1,p2; and a plane defined by the
* normal n and point p0, compute an intersection. The parametric
* coordinate along the line is returned in t, and the coordinates of
* intersection are returned in x. A zero is returned if the plane and line
* do not intersect between (0<=t<=1). If the plane and line are parallel,
* zero is returned and t is set to VTK_LARGE_DOUBLE.
*/
static int IntersectWithLine(
const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3]);
int IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3]);
//@}
//@{
/**
* Given two planes, one infinite and one finite, defined by the normal n
* and point o (infinite plane), and the second finite plane1 defined by
* the three points (pOrigin,px,py), compute a line of intersection (if
* any). The line of intersection is defined by the return values
* (x0,x1). If there is no intersection, then zero is returned; otherwise
* non-zero. There are two variants of this method. The static function
* operates on the supplied function parameters; the non-static operates on
* this instance of vtkPlane (and its associated origin and normal).
*/
static int IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
double py[3], double x0[3], double x1[3]);
int IntersectWithFinitePlane(
double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]);
//@}
protected:
vtkPlane();
~vtkPlane() override {}
double Normal[3];
double Origin[3];
private:
vtkPlane(const vtkPlane&) = delete;
void operator=(const vtkPlane&) = delete;
};
// Generally the normal should be normalized
inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3])
{
return normal[0] * (x[0] - origin[0]) + normal[1] * (x[1] - origin[1]) +
normal[2] * (x[2] - origin[2]);
}
// Assumes normal is normalized
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
{
#define vtkPlaneAbs(x) ((x) < 0 ? -(x) : (x))
return (vtkPlaneAbs(n[0] * (x[0] - p0[0]) + n[1] * (x[1] - p0[1]) + n[2] * (x[2] - p0[2])));
}
#endif