You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

179 lines
7.1 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkLine.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkLine
* @brief cell represents a 1D line
*
* vtkLine is a concrete implementation of vtkCell to represent a 1D line.
*/
#ifndef vtkLine_h
#define vtkLine_h
#include "vtkCell.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell
{
public:
static vtkLine* New();
vtkTypeMacro(vtkLine, vtkCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_LINE; }
int GetCellDimension() override { return 1; }
int GetNumberOfEdges() override { return 0; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int) override { return nullptr; }
vtkCell* GetFace(int) override { return nullptr; }
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
//@}
/**
* Clip this line using scalar value provided. Like contouring, except
* that it cuts the line to produce other lines.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Return the center of the triangle in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Line-line intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Performs intersection of the projection of two finite 3D lines onto a 2D
* plane. An intersection is found if the projection of the two lines onto
* the plane perpendicular to the cross product of the two lines intersect.
* The parameters (u,v) are the parametric coordinates of the lines at the
* position of closest approach.
*/
static int Intersection(const double p1[3], const double p2[3], const double x1[3],
const double x2[3], double& u, double& v);
/**
* Performs intersection of two finite 3D lines. An intersection is found if
* the projection of the two lines onto the plane perpendicular to the cross
* product of the two lines intersect, and if the distance between the
* closest points of approach are within a relative tolerance. The parameters
* (u,v) are the parametric coordinates of the lines at the position of
* closest approach.
* NOTE: "Unlike Intersection(), which determines whether the projections of
* two lines onto a plane intersect, Intersection3D() determines whether the
* lines themselves in 3D space intersect, within a tolerance.
*/
static int Intersection3D(
double p1[3], double p2[3], double x1[3], double x2[3], double& u, double& v);
/**
* Compute the distance of a point x to a finite line (p1,p2). The method
* computes the parametric coordinate t and the point location on the
* line. Note that t is unconstrained (i.e., it may lie outside the range
* [0,1]) but the closest point will lie within the finite line [p1,p2], if
* it is defined. Also, the method returns the distance squared between x and
* the line (p1,p2).
*/
static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double& t,
double closestPoint[3] = nullptr);
/**
* Determine the distance of the current vertex to the edge defined by
* the vertices provided. Returns distance squared. Note: line is assumed
* infinite in extent.
*/
static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]);
/**
* Computes the shortest distance squared between two infinite lines, each
* defined by a pair of points (l0,l1) and (m0,m1).
* Upon return, the closest points on the two line segments will be stored
* in closestPt1 and closestPt2. Their parametric coords
* (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is
* the shortest distance squared between the two line-segments.
*/
static double DistanceBetweenLines(double l0[3], double l1[3], double m0[3], double m1[3],
double closestPt1[3], double closestPt2[3], double& t1, double& t2);
/**
* Computes the shortest distance squared between two finite line segments
* defined by their end points (l0,l1) and (m0,m1).
* Upon return, the closest points on the two line segments will be stored
* in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1)
* will be stored in t0 and t1. The return value is the shortest distance
* squared between the two line-segments.
*/
static double DistanceBetweenLineSegments(double l0[3], double l1[3], double m0[3], double m1[3],
double closestPt1[3], double closestPt2[3], double& t1, double& t2);
static void InterpolationFunctions(const double pcoords[3], double weights[2]);
static void InterpolationDerivs(const double pcoords[3], double derivs[2]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[2]) override
{
vtkLine::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[2]) override
{
vtkLine::InterpolationDerivs(pcoords, derivs);
}
//@}
protected:
vtkLine();
~vtkLine() override {}
private:
vtkLine(const vtkLine&) = delete;
void operator=(const vtkLine&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkLine::GetParametricCenter(double pcoords[3])
{
pcoords[0] = 0.5;
pcoords[1] = pcoords[2] = 0.0;
return 0;
}
#endif