You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
7.1 KiB
C++
179 lines
7.1 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkLine.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkLine
|
|
* @brief cell represents a 1D line
|
|
*
|
|
* vtkLine is a concrete implementation of vtkCell to represent a 1D line.
|
|
*/
|
|
|
|
#ifndef vtkLine_h
|
|
#define vtkLine_h
|
|
|
|
#include "vtkCell.h"
|
|
#include "vtkCommonDataModelModule.h" // For export macro
|
|
class vtkIncrementalPointLocator;
|
|
|
|
class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell
|
|
{
|
|
public:
|
|
static vtkLine* New();
|
|
vtkTypeMacro(vtkLine, vtkCell);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
//@{
|
|
/**
|
|
* See the vtkCell API for descriptions of these methods.
|
|
*/
|
|
int GetCellType() override { return VTK_LINE; }
|
|
int GetCellDimension() override { return 1; }
|
|
int GetNumberOfEdges() override { return 0; }
|
|
int GetNumberOfFaces() override { return 0; }
|
|
vtkCell* GetEdge(int) override { return nullptr; }
|
|
vtkCell* GetFace(int) override { return nullptr; }
|
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
|
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
|
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
|
|
double& dist2, double weights[]) override;
|
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
|
void Derivatives(
|
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
|
double* GetParametricCoords() override;
|
|
//@}
|
|
|
|
/**
|
|
* Clip this line using scalar value provided. Like contouring, except
|
|
* that it cuts the line to produce other lines.
|
|
*/
|
|
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
|
|
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
|
|
|
|
/**
|
|
* Return the center of the triangle in parametric coordinates.
|
|
*/
|
|
int GetParametricCenter(double pcoords[3]) override;
|
|
|
|
/**
|
|
* Line-line intersection. Intersection has to occur within [0,1] parametric
|
|
* coordinates and with specified tolerance.
|
|
*/
|
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
|
double pcoords[3], int& subId) override;
|
|
|
|
/**
|
|
* Performs intersection of the projection of two finite 3D lines onto a 2D
|
|
* plane. An intersection is found if the projection of the two lines onto
|
|
* the plane perpendicular to the cross product of the two lines intersect.
|
|
* The parameters (u,v) are the parametric coordinates of the lines at the
|
|
* position of closest approach.
|
|
*/
|
|
static int Intersection(const double p1[3], const double p2[3], const double x1[3],
|
|
const double x2[3], double& u, double& v);
|
|
|
|
/**
|
|
* Performs intersection of two finite 3D lines. An intersection is found if
|
|
* the projection of the two lines onto the plane perpendicular to the cross
|
|
* product of the two lines intersect, and if the distance between the
|
|
* closest points of approach are within a relative tolerance. The parameters
|
|
* (u,v) are the parametric coordinates of the lines at the position of
|
|
* closest approach.
|
|
|
|
* NOTE: "Unlike Intersection(), which determines whether the projections of
|
|
* two lines onto a plane intersect, Intersection3D() determines whether the
|
|
* lines themselves in 3D space intersect, within a tolerance.
|
|
*/
|
|
static int Intersection3D(
|
|
double p1[3], double p2[3], double x1[3], double x2[3], double& u, double& v);
|
|
|
|
/**
|
|
* Compute the distance of a point x to a finite line (p1,p2). The method
|
|
* computes the parametric coordinate t and the point location on the
|
|
* line. Note that t is unconstrained (i.e., it may lie outside the range
|
|
* [0,1]) but the closest point will lie within the finite line [p1,p2], if
|
|
* it is defined. Also, the method returns the distance squared between x and
|
|
* the line (p1,p2).
|
|
*/
|
|
static double DistanceToLine(const double x[3], const double p1[3], const double p2[3], double& t,
|
|
double closestPoint[3] = nullptr);
|
|
|
|
/**
|
|
* Determine the distance of the current vertex to the edge defined by
|
|
* the vertices provided. Returns distance squared. Note: line is assumed
|
|
* infinite in extent.
|
|
*/
|
|
static double DistanceToLine(const double x[3], const double p1[3], const double p2[3]);
|
|
|
|
/**
|
|
* Computes the shortest distance squared between two infinite lines, each
|
|
* defined by a pair of points (l0,l1) and (m0,m1).
|
|
* Upon return, the closest points on the two line segments will be stored
|
|
* in closestPt1 and closestPt2. Their parametric coords
|
|
* (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is
|
|
* the shortest distance squared between the two line-segments.
|
|
*/
|
|
static double DistanceBetweenLines(double l0[3], double l1[3], double m0[3], double m1[3],
|
|
double closestPt1[3], double closestPt2[3], double& t1, double& t2);
|
|
|
|
/**
|
|
* Computes the shortest distance squared between two finite line segments
|
|
* defined by their end points (l0,l1) and (m0,m1).
|
|
* Upon return, the closest points on the two line segments will be stored
|
|
* in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1)
|
|
* will be stored in t0 and t1. The return value is the shortest distance
|
|
* squared between the two line-segments.
|
|
*/
|
|
static double DistanceBetweenLineSegments(double l0[3], double l1[3], double m0[3], double m1[3],
|
|
double closestPt1[3], double closestPt2[3], double& t1, double& t2);
|
|
|
|
static void InterpolationFunctions(const double pcoords[3], double weights[2]);
|
|
static void InterpolationDerivs(const double pcoords[3], double derivs[2]);
|
|
//@{
|
|
/**
|
|
* Compute the interpolation functions/derivatives
|
|
* (aka shape functions/derivatives)
|
|
*/
|
|
void InterpolateFunctions(const double pcoords[3], double weights[2]) override
|
|
{
|
|
vtkLine::InterpolationFunctions(pcoords, weights);
|
|
}
|
|
void InterpolateDerivs(const double pcoords[3], double derivs[2]) override
|
|
{
|
|
vtkLine::InterpolationDerivs(pcoords, derivs);
|
|
}
|
|
//@}
|
|
|
|
protected:
|
|
vtkLine();
|
|
~vtkLine() override {}
|
|
|
|
private:
|
|
vtkLine(const vtkLine&) = delete;
|
|
void operator=(const vtkLine&) = delete;
|
|
};
|
|
|
|
//----------------------------------------------------------------------------
|
|
inline int vtkLine::GetParametricCenter(double pcoords[3])
|
|
{
|
|
pcoords[0] = 0.5;
|
|
pcoords[1] = pcoords[2] = 0.0;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|