You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

138 lines
5.9 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkHigherOrderTetra.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkHigherOrderTetra
* @brief A 3D cell that represents an arbitrary order HigherOrder tetrahedron
*
* vtkHigherOrderTetra is a concrete implementation of vtkCell to represent a
* 3D tetrahedron using HigherOrder shape functions of user specified order.
*
* The number of points in a HigherOrder cell determines the order over which they
* are iterated relative to the parametric coordinate system of the cell. The
* first points that are reported are vertices. They appear in the same order in
* which they would appear in linear cells. Mid-edge points are reported next.
* They are reported in sequence. For two- and three-dimensional (3D) cells, the
* following set of points to be reported are face points. Finally, 3D cells
* report points interior to their volume.
*/
#ifndef vtkHigherOrderTetra_h
#define vtkHigherOrderTetra_h
#include <functional> //For std::function
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNew.h" // For member variable.
#include "vtkNonLinearCell.h"
#include "vtkSmartPointer.h" // For member variable.
#include <vector> //For caching
class vtkTetra;
class vtkHigherOrderCurve;
class vtkHigherOrderTriangle;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkHigherOrderTetra : public vtkNonLinearCell
{
public:
vtkTypeMacro(vtkHigherOrderTetra, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
int GetCellType() override = 0;
int GetCellDimension() override { return 3; }
int RequiresInitialization() override { return 1; }
int GetNumberOfEdges() override { return 6; }
int GetNumberOfFaces() override { return 4; }
vtkCell* GetEdge(int edgeId) override = 0;
vtkCell* GetFace(int faceId) override = 0;
void SetEdgeIdsAndPoints(int edgeId,
const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points);
void SetFaceIdsAndPoints(vtkHigherOrderTriangle* result, int edgeId,
const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points);
void Initialize() override;
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void JacobianInverse(const double pcoords[3], double** inverse, double* derivs);
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
void SetParametricCoords();
double* GetParametricCoords() override;
int GetParametricCenter(double pcoords[3]) override;
double GetParametricDistance(const double pcoords[3]) override;
void InterpolateFunctions(const double pcoords[3], double* weights) override = 0;
void InterpolateDerivs(const double pcoords[3], double* derivs) override = 0;
vtkIdType GetOrder() const { return this->Order; }
vtkIdType ComputeOrder();
static vtkIdType ComputeOrder(const vtkIdType nPoints);
void ToBarycentricIndex(vtkIdType index, vtkIdType* bindex);
vtkIdType ToIndex(const vtkIdType* bindex);
static void BarycentricIndex(vtkIdType index, vtkIdType* bindex, vtkIdType order);
static vtkIdType Index(const vtkIdType* bindex, vtkIdType order);
virtual vtkHigherOrderCurve* getEdgeCell() = 0;
virtual vtkHigherOrderTriangle* getFaceCell() = 0;
protected:
vtkHigherOrderTetra();
~vtkHigherOrderTetra() override;
vtkIdType GetNumberOfSubtetras() const { return this->NumberOfSubtetras; }
vtkIdType ComputeNumberOfSubtetras();
// Description:
// Given the index of the subtriangle, compute the barycentric indices of
// the subtriangle's vertices.
void SubtetraBarycentricPointIndices(vtkIdType cellIndex, vtkIdType (&pointBIndices)[4][4]);
void TetraFromOctahedron(
vtkIdType cellIndex, const vtkIdType (&octBIndices)[6][4], vtkIdType (&tetraBIndices)[4][4]);
vtkTetra* Tetra;
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
vtkIdType Order;
vtkIdType NumberOfSubtetras;
vtkSmartPointer<vtkPoints> PointParametricCoordinates;
std::vector<vtkIdType> EdgeIds;
std::vector<vtkIdType> BarycentricIndexMap;
std::vector<vtkIdType> IndexMap;
std::vector<vtkIdType> SubtetraIndexMap;
private:
vtkHigherOrderTetra(const vtkHigherOrderTetra&) = delete;
void operator=(const vtkHigherOrderTetra&) = delete;
};
#endif