You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

323 lines
10 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkGeneralTransform.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkGeneralTransform
* @brief allows operations on any transforms
*
* vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform,
* but it will work with any vtkAbstractTransform as input. It is
* not as efficient as the other two, however, because arbitrary
* transformations cannot be concatenated by matrix multiplication.
* Transform concatenation is simulated by passing each input point
* through each transform in turn.
* @sa
* vtkTransform vtkPerspectiveTransform
*/
#ifndef vtkGeneralTransform_h
#define vtkGeneralTransform_h
#include "vtkAbstractTransform.h"
#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTKCOMMONTRANSFORMS_EXPORT vtkGeneralTransform : public vtkAbstractTransform
{
public:
static vtkGeneralTransform* New();
vtkTypeMacro(vtkGeneralTransform, vtkAbstractTransform);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set this transformation to the identity transformation. If
* the transform has an Input, then the transformation will be
* reset so that it is the same as the Input.
*/
void Identity()
{
this->Concatenation->Identity();
this->Modified();
}
/**
* Invert the transformation. This will also set a flag so that
* the transformation will use the inverse of its Input, if an Input
* has been set.
*/
void Inverse() override
{
this->Concatenation->Inverse();
this->Modified();
}
//@{
/**
* Create a translation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
*/
void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); }
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }
//@}
//@{
/**
* Create a rotation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
* The angle is in degrees, and (x,y,z) specifies the axis that the
* rotation will be performed around.
*/
void RotateWXYZ(double angle, double x, double y, double z)
{
this->Concatenation->Rotate(angle, x, y, z);
}
void RotateWXYZ(double angle, const double axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
void RotateWXYZ(double angle, const float axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
//@}
//@{
/**
* Create a rotation matrix about the X, Y, or Z axis and concatenate
* it with the current transformation according to PreMultiply or
* PostMultiply semantics. The angle is expressed in degrees.
*/
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }
//@}
//@{
/**
* Create a scale matrix (i.e. set the diagonal elements to x, y, z)
* and concatenate it with the current transformation according to
* PreMultiply or PostMultiply semantics.
*/
void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); }
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }
//@}
//@{
/**
* Concatenates the matrix with the current transformation according
* to PreMultiply or PostMultiply semantics.
*/
void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); }
void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }
//@}
/**
* Concatenate the specified transform with the current transformation
* according to PreMultiply or PostMultiply semantics.
* The concatenation is pipelined, meaning that if any of the
* transformations are changed, even after Concatenate() is called,
* those changes will be reflected when you call TransformPoint().
*/
void Concatenate(vtkAbstractTransform* transform);
/**
* Sets the internal state of the transform to PreMultiply. All subsequent
* operations will occur before those already represented in the
* current transformation. In homogeneous matrix notation, M = M*A where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PreMultiply()
{
if (this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(1);
this->Modified();
}
/**
* Sets the internal state of the transform to PostMultiply. All subsequent
* operations will occur after those already represented in the
* current transformation. In homogeneous matrix notation, M = A*M where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PostMultiply()
{
if (!this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(0);
this->Modified();
}
/**
* Get the total number of transformations that are linked into this
* one via Concatenate() operations or via SetInput().
*/
int GetNumberOfConcatenatedTransforms()
{
return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1);
}
/**
* Get one of the concatenated transformations as a vtkAbstractTransform.
* These transformations are applied, in series, every time the
* transformation of a coordinate occurs. This method is provided
* to make it possible to decompose a transformation into its
* constituents, for example to save a transformation to a file.
*/
vtkAbstractTransform* GetConcatenatedTransform(int i)
{
if (this->Input == nullptr)
{
return this->Concatenation->GetTransform(i);
}
else if (i < this->Concatenation->GetNumberOfPreTransforms())
{
return this->Concatenation->GetTransform(i);
}
else if (i > this->Concatenation->GetNumberOfPreTransforms())
{
return this->Concatenation->GetTransform(i - 1);
}
else if (this->GetInverseFlag())
{
return this->Input->GetInverse();
}
else
{
return this->Input;
}
}
//@{
/**
* Set the input for this transformation. This will be used as the
* base transformation if it is set. This method allows you to build
* a transform pipeline: if the input is modified, then this transformation
* will automatically update accordingly. Note that the InverseFlag,
* controlled via Inverse(), determines whether this transformation
* will use the Input or the inverse of the Input.
*/
void SetInput(vtkAbstractTransform* input);
vtkAbstractTransform* GetInput() { return this->Input; }
//@}
/**
* Get the inverse flag of the transformation. This controls
* whether it is the Input or the inverse of the Input that
* is used as the base transformation. The InverseFlag is
* flipped every time Inverse() is called. The InverseFlag
* is off when a transform is first created.
*/
int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }
//@{
/**
* Pushes the current transformation onto the transformation stack.
*/
void Push()
{
if (this->Stack == nullptr)
{
this->Stack = vtkTransformConcatenationStack::New();
}
this->Stack->Push(&this->Concatenation);
this->Modified();
}
//@}
//@{
/**
* Deletes the transformation on the top of the stack and sets the top
* to the next transformation on the stack.
*/
void Pop()
{
if (this->Stack == nullptr)
{
return;
}
this->Stack->Pop(&this->Concatenation);
this->Modified();
}
//@}
//@{
/**
* This will calculate the transformation without calling Update.
* Meant for use only within other VTK classes.
*/
void InternalTransformPoint(const float in[3], float out[3]) override;
void InternalTransformPoint(const double in[3], double out[3]) override;
//@}
//@{
/**
* This will calculate the transformation as well as its derivative
* without calling Update. Meant for use only within other VTK
* classes.
*/
void InternalTransformDerivative(
const float in[3], float out[3], float derivative[3][3]) override;
void InternalTransformDerivative(
const double in[3], double out[3], double derivative[3][3]) override;
//@}
/**
* Check for self-reference. Will return true if concatenating
* with the specified transform, setting it to be our inverse,
* or setting it to be our input will create a circular reference.
* CircuitCheck is automatically called by SetInput(), SetInverse(),
* and Concatenate(vtkXTransform *). Avoid using this function,
* it is experimental.
*/
int CircuitCheck(vtkAbstractTransform* transform) override;
/**
* Make another transform of the same type.
*/
vtkAbstractTransform* MakeTransform() override;
/**
* Override GetMTime to account for input and concatenation.
*/
vtkMTimeType GetMTime() override;
protected:
vtkGeneralTransform();
~vtkGeneralTransform() override;
void InternalDeepCopy(vtkAbstractTransform* t) override;
void InternalUpdate() override;
vtkAbstractTransform* Input;
vtkTransformConcatenation* Concatenation;
vtkTransformConcatenationStack* Stack;
private:
vtkGeneralTransform(const vtkGeneralTransform&) = delete;
void operator=(const vtkGeneralTransform&) = delete;
};
#endif