You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
11 KiB
C++
328 lines
11 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkGaussianSplatter.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkGaussianSplatter
|
|
* @brief splat points into a volume with an elliptical, Gaussian distribution
|
|
*
|
|
* vtkGaussianSplatter is a filter that injects input points into a
|
|
* structured points (volume) dataset. As each point is injected, it "splats"
|
|
* or distributes values to nearby voxels. Data is distributed using an
|
|
* elliptical, Gaussian distribution function. The distribution function is
|
|
* modified using scalar values (expands distribution) or normals
|
|
* (creates ellipsoidal distribution rather than spherical).
|
|
*
|
|
* In general, the Gaussian distribution function f(x) around a given
|
|
* splat point p is given by
|
|
*
|
|
* f(x) = ScaleFactor * exp( ExponentFactor*((r/Radius)**2) )
|
|
*
|
|
* where x is the current voxel sample point; r is the distance |x-p|
|
|
* ExponentFactor <= 0.0, and ScaleFactor can be multiplied by the scalar
|
|
* value of the point p that is currently being splatted.
|
|
*
|
|
* If points normals are present (and NormalWarping is on), then the splat
|
|
* function becomes elliptical (as compared to the spherical one described
|
|
* by the previous equation). The Gaussian distribution function then
|
|
* becomes:
|
|
*
|
|
* f(x) = ScaleFactor *
|
|
* exp( ExponentFactor*( ((rxy/E)**2 + z**2)/R**2) )
|
|
*
|
|
* where E is a user-defined eccentricity factor that controls the elliptical
|
|
* shape of the splat; z is the distance of the current voxel sample point
|
|
* along normal N; and rxy is the distance of x in the direction
|
|
* prependicular to N.
|
|
*
|
|
* This class is typically used to convert point-valued distributions into
|
|
* a volume representation. The volume is then usually iso-surfaced or
|
|
* volume rendered to generate a visualization. It can be used to create
|
|
* surfaces from point distributions, or to create structure (i.e.,
|
|
* topology) when none exists.
|
|
*
|
|
* @warning
|
|
* The input to this filter is any dataset type. This filter can be used
|
|
* to resample any form of data, i.e., the input data need not be
|
|
* unstructured.
|
|
*
|
|
* @warning
|
|
* Some voxels may never receive a contribution during the splatting process.
|
|
* The final value of these points can be specified with the "NullValue"
|
|
* instance variable.
|
|
*
|
|
* @warning
|
|
* This class has been threaded with vtkSMPTools. Using TBB or other
|
|
* non-sequential type (set in the CMake variable
|
|
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
|
|
*
|
|
* @sa
|
|
* vtkShepardMethod vtkCheckerboardSplatter
|
|
*/
|
|
|
|
#ifndef vtkGaussianSplatter_h
|
|
#define vtkGaussianSplatter_h
|
|
|
|
#include "vtkImageAlgorithm.h"
|
|
#include "vtkImagingHybridModule.h" // For export macro
|
|
|
|
#define VTK_ACCUMULATION_MODE_MIN 0
|
|
#define VTK_ACCUMULATION_MODE_MAX 1
|
|
#define VTK_ACCUMULATION_MODE_SUM 2
|
|
|
|
class vtkDoubleArray;
|
|
class vtkCompositeDataSet;
|
|
class vtkGaussianSplatterAlgorithm;
|
|
|
|
class VTKIMAGINGHYBRID_EXPORT vtkGaussianSplatter : public vtkImageAlgorithm
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkGaussianSplatter, vtkImageAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Construct object with dimensions=(50,50,50); automatic computation of
|
|
* bounds; a splat radius of 0.1; an exponent factor of -5; and normal and
|
|
* scalar warping turned on.
|
|
*/
|
|
static vtkGaussianSplatter* New();
|
|
|
|
//@{
|
|
/**
|
|
* Set / get the dimensions of the sampling structured point set. Higher
|
|
* values produce better results but are much slower.
|
|
*/
|
|
void SetSampleDimensions(int i, int j, int k);
|
|
void SetSampleDimensions(int dim[3]);
|
|
vtkGetVectorMacro(SampleDimensions, int, 3);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set / get the (xmin,xmax, ymin,ymax, zmin,zmax) bounding box in which
|
|
* the sampling is performed. If any of the (min,max) bounds values are
|
|
* min >= max, then the bounds will be computed automatically from the input
|
|
* data. Otherwise, the user-specified bounds will be used.
|
|
*/
|
|
vtkSetVector6Macro(ModelBounds, double);
|
|
vtkGetVectorMacro(ModelBounds, double, 6);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set / get the radius of propagation of the splat. This value is expressed
|
|
* as a percentage of the length of the longest side of the sampling
|
|
* volume. Smaller numbers greatly reduce execution time.
|
|
*/
|
|
vtkSetClampMacro(Radius, double, 0.0, 1.0);
|
|
vtkGetMacro(Radius, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Multiply Gaussian splat distribution by this value. If ScalarWarping
|
|
* is on, then the Scalar value will be multiplied by the ScaleFactor
|
|
* times the Gaussian function.
|
|
*/
|
|
vtkSetClampMacro(ScaleFactor, double, 0.0, VTK_DOUBLE_MAX);
|
|
vtkGetMacro(ScaleFactor, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set / get the sharpness of decay of the splats. This is the
|
|
* exponent constant in the Gaussian equation. Normally this is
|
|
* a negative value.
|
|
*/
|
|
vtkSetMacro(ExponentFactor, double);
|
|
vtkGetMacro(ExponentFactor, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Turn on/off the generation of elliptical splats. If normal warping is
|
|
* on, then the input normals affect the distribution of the splat. This
|
|
* boolean is used in combination with the Eccentricity ivar.
|
|
*/
|
|
vtkSetMacro(NormalWarping, vtkTypeBool);
|
|
vtkGetMacro(NormalWarping, vtkTypeBool);
|
|
vtkBooleanMacro(NormalWarping, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Control the shape of elliptical splatting. Eccentricity is the ratio
|
|
* of the major axis (aligned along normal) to the minor (axes) aligned
|
|
* along other two axes. So Eccentricity > 1 creates needles with the
|
|
* long axis in the direction of the normal; Eccentricity<1 creates
|
|
* pancakes perpendicular to the normal vector.
|
|
*/
|
|
vtkSetClampMacro(Eccentricity, double, 0.001, VTK_DOUBLE_MAX);
|
|
vtkGetMacro(Eccentricity, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Turn on/off the scaling of splats by scalar value.
|
|
*/
|
|
vtkSetMacro(ScalarWarping, vtkTypeBool);
|
|
vtkGetMacro(ScalarWarping, vtkTypeBool);
|
|
vtkBooleanMacro(ScalarWarping, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Turn on/off the capping of the outer boundary of the volume
|
|
* to a specified cap value. This can be used to close surfaces
|
|
* (after iso-surfacing) and create other effects.
|
|
*/
|
|
vtkSetMacro(Capping, vtkTypeBool);
|
|
vtkGetMacro(Capping, vtkTypeBool);
|
|
vtkBooleanMacro(Capping, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Specify the cap value to use. (This instance variable only has effect
|
|
* if the ivar Capping is on.)
|
|
*/
|
|
vtkSetMacro(CapValue, double);
|
|
vtkGetMacro(CapValue, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Specify the scalar accumulation mode. This mode expresses how scalar
|
|
* values are combined when splats are overlapped. The Max mode acts
|
|
* like a set union operation and is the most commonly used; the Min
|
|
* mode acts like a set intersection, and the sum is just weird.
|
|
*/
|
|
vtkSetClampMacro(AccumulationMode, int, VTK_ACCUMULATION_MODE_MIN, VTK_ACCUMULATION_MODE_SUM);
|
|
vtkGetMacro(AccumulationMode, int);
|
|
void SetAccumulationModeToMin() { this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MIN); }
|
|
void SetAccumulationModeToMax() { this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MAX); }
|
|
void SetAccumulationModeToSum() { this->SetAccumulationMode(VTK_ACCUMULATION_MODE_SUM); }
|
|
const char* GetAccumulationModeAsString();
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set the Null value for output points not receiving a contribution from the
|
|
* input points. (This is the initial value of the voxel samples.)
|
|
*/
|
|
vtkSetMacro(NullValue, double);
|
|
vtkGetMacro(NullValue, double);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Compute the size of the sample bounding box automatically from the
|
|
* input data. This is an internal helper function.
|
|
*/
|
|
void ComputeModelBounds(vtkDataSet* input, vtkImageData* output, vtkInformation* outInfo);
|
|
void ComputeModelBounds(
|
|
vtkCompositeDataSet* input, vtkImageData* output, vtkInformation* outInfo);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Provide access to templated helper class. Note that SamplePoint() method
|
|
* is public here because some compilers don't handle friend functions
|
|
* properly.
|
|
*/
|
|
friend class vtkGaussianSplatterAlgorithm;
|
|
double SamplePoint(double x[3]) // for compilers who can't handle this
|
|
{
|
|
return (this->*Sample)(x);
|
|
}
|
|
void SetScalar(vtkIdType idx, double dist2, double* sPtr)
|
|
{
|
|
double v = (this->*SampleFactor)(this->S) *
|
|
exp(static_cast<double>(this->ExponentFactor * (dist2) / (this->Radius2)));
|
|
//@}
|
|
|
|
if (!this->Visited[idx])
|
|
{
|
|
this->Visited[idx] = 1;
|
|
*sPtr = v;
|
|
}
|
|
else
|
|
{
|
|
switch (this->AccumulationMode)
|
|
{
|
|
case VTK_ACCUMULATION_MODE_MIN:
|
|
if (*sPtr > v)
|
|
{
|
|
*sPtr = v;
|
|
}
|
|
break;
|
|
case VTK_ACCUMULATION_MODE_MAX:
|
|
if (*sPtr < v)
|
|
{
|
|
*sPtr = v;
|
|
}
|
|
break;
|
|
case VTK_ACCUMULATION_MODE_SUM:
|
|
*sPtr += v;
|
|
break;
|
|
}
|
|
} // not first visit
|
|
}
|
|
|
|
protected:
|
|
vtkGaussianSplatter();
|
|
~vtkGaussianSplatter() override {}
|
|
|
|
int FillInputPortInformation(int port, vtkInformation* info) override;
|
|
int RequestInformation(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
void Cap(vtkDoubleArray* s);
|
|
|
|
int SampleDimensions[3]; // dimensions of volume to splat into
|
|
double Radius; // maximum distance splat propagates (as fraction 0->1)
|
|
double ExponentFactor; // scale exponent of gaussian function
|
|
double ModelBounds[6]; // bounding box of splatting dimensions
|
|
vtkTypeBool NormalWarping; // on/off warping of splat via normal
|
|
double Eccentricity; // elliptic distortion due to normals
|
|
vtkTypeBool ScalarWarping; // on/off warping of splat via scalar
|
|
double ScaleFactor; // splat size influenced by scale factor
|
|
vtkTypeBool Capping; // Cap side of volume to close surfaces
|
|
double CapValue; // value to use for capping
|
|
int AccumulationMode; // how to combine scalar values
|
|
|
|
double Gaussian(double x[3]);
|
|
double EccentricGaussian(double x[3]);
|
|
double ScalarSampling(double s) { return this->ScaleFactor * s; }
|
|
double PositionSampling(double) { return this->ScaleFactor; }
|
|
|
|
private:
|
|
double Radius2;
|
|
double (vtkGaussianSplatter::*Sample)(double x[3]);
|
|
double (vtkGaussianSplatter::*SampleFactor)(double s);
|
|
char* Visited;
|
|
double Eccentricity2;
|
|
double* P;
|
|
double* N;
|
|
double S;
|
|
double Origin[3];
|
|
double Spacing[3];
|
|
double SplatDistance[3];
|
|
double NullValue;
|
|
|
|
private:
|
|
vtkGaussianSplatter(const vtkGaussianSplatter&) = delete;
|
|
void operator=(const vtkGaussianSplatter&) = delete;
|
|
};
|
|
|
|
#endif
|