You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.2 KiB
C++
148 lines
5.2 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkCurvatures.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkCurvatures
|
|
* @brief compute curvatures (Gauss and mean) of a Polydata object
|
|
*
|
|
* vtkCurvatures takes a polydata input and computes the curvature of the
|
|
* mesh at each point. Four possible methods of computation are available :
|
|
*
|
|
* Gauss Curvature
|
|
* discrete Gauss curvature (K) computation,
|
|
* \f$K(\text{vertex v}) = 2*\pi - \sum_{\text{facet neighbs f of v}} (\text{angle_f at v})\f$.
|
|
* The contribution of every facet is for the moment weighted by \f$Area(facet)/3\f$.
|
|
* The units of Gaussian Curvature are \f$[1/m^2]\f$.
|
|
*
|
|
* Mean Curvature
|
|
* \f$H(vertex v) = \text{average over edges neighbs e of H(e)}\f$,
|
|
* \f$H(edge e) = length(e) * dihedral\_angle(e)\f$.
|
|
*
|
|
* NB: dihedral_angle is the ORIENTED angle between -PI and PI,
|
|
* this means that the surface is assumed to be orientable
|
|
* the computation creates the orientation.
|
|
* The units of Mean Curvature are [1/m].
|
|
*
|
|
* Maximum (\f$k_\max\f$) and Minimum (\f$k_\min\f$) Principal Curvatures
|
|
* \f$k_\max = H + \sqrt{H^2 - K}\f$,
|
|
* \f$k_\min = H - \sqrt{H^2 - K}\f$
|
|
* Excepting spherical and planar surfaces which have equal principal
|
|
* curvatures, the curvature at a point on a surface varies with the direction
|
|
* one "sets off" from the point. For all directions, the curvature will pass
|
|
* through two extrema: a minimum (\f$k_\min\f$) and a maximum (\f$k_\max\f$)
|
|
* which occur at mutually orthogonal directions to each other.
|
|
*
|
|
* NB. The sign of the Gauss curvature is a geometric invariant, it should be
|
|
* positive when the surface looks like a sphere, negative when it looks like a
|
|
* saddle, however the sign of the Mean curvature is not, it depends on the
|
|
* convention for normals. This code assumes that normals point outwards (i.e.
|
|
* from the surface of a sphere outwards). If a given mesh produces curvatures
|
|
* of opposite senses then the flag InvertMeanCurvature can be set and the
|
|
* Curvature reported by the Mean calculation will be inverted.
|
|
*
|
|
* @par Thanks:
|
|
* Philip Batchelor philipp.batchelor@kcl.ac.uk for creating and contributing
|
|
* the class and Andrew Maclean a.maclean@acfr.usyd.edu.au for cleanups and
|
|
* fixes. Thanks also to Goodwin Lawlor for contributing patch to calculate
|
|
* principal curvatures
|
|
*
|
|
*
|
|
*
|
|
*/
|
|
|
|
#ifndef vtkCurvatures_h
|
|
#define vtkCurvatures_h
|
|
|
|
#include "vtkFiltersGeneralModule.h" // For export macro
|
|
#include "vtkPolyDataAlgorithm.h"
|
|
|
|
#define VTK_CURVATURE_GAUSS 0
|
|
#define VTK_CURVATURE_MEAN 1
|
|
#define VTK_CURVATURE_MAXIMUM 2
|
|
#define VTK_CURVATURE_MINIMUM 3
|
|
|
|
class VTKFILTERSGENERAL_EXPORT vtkCurvatures : public vtkPolyDataAlgorithm
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkCurvatures, vtkPolyDataAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Construct with curvature type set to Gauss
|
|
*/
|
|
static vtkCurvatures* New();
|
|
|
|
//@{
|
|
/**
|
|
* Set/Get Curvature type
|
|
* VTK_CURVATURE_GAUSS: Gaussian curvature, stored as
|
|
* DataArray "Gauss_Curvature"
|
|
* VTK_CURVATURE_MEAN : Mean curvature, stored as
|
|
* DataArray "Mean_Curvature"
|
|
*/
|
|
vtkSetMacro(CurvatureType, int);
|
|
vtkGetMacro(CurvatureType, int);
|
|
void SetCurvatureTypeToGaussian() { this->SetCurvatureType(VTK_CURVATURE_GAUSS); }
|
|
void SetCurvatureTypeToMean() { this->SetCurvatureType(VTK_CURVATURE_MEAN); }
|
|
void SetCurvatureTypeToMaximum() { this->SetCurvatureType(VTK_CURVATURE_MAXIMUM); }
|
|
void SetCurvatureTypeToMinimum() { this->SetCurvatureType(VTK_CURVATURE_MINIMUM); }
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/Get the flag which inverts the mean curvature calculation for
|
|
* meshes with inward pointing normals (default false)
|
|
*/
|
|
vtkSetMacro(InvertMeanCurvature, vtkTypeBool);
|
|
vtkGetMacro(InvertMeanCurvature, vtkTypeBool);
|
|
vtkBooleanMacro(InvertMeanCurvature, vtkTypeBool);
|
|
//@}
|
|
|
|
protected:
|
|
vtkCurvatures();
|
|
|
|
// Usual data generation method
|
|
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
|
|
/**
|
|
* discrete Gauss curvature (K) computation,
|
|
* cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
|
|
*/
|
|
void GetGaussCurvature(vtkPolyData* output);
|
|
|
|
// discrete Mean curvature (H) computation,
|
|
// cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
|
|
void GetMeanCurvature(vtkPolyData* output);
|
|
|
|
/**
|
|
* Maximum principal curvature \f$k_max = H + sqrt(H^2 -K)\f$
|
|
*/
|
|
void GetMaximumCurvature(vtkPolyData* input, vtkPolyData* output);
|
|
|
|
/**
|
|
* Minimum principal curvature \f$k_min = H - sqrt(H^2 -K)\f$
|
|
*/
|
|
void GetMinimumCurvature(vtkPolyData* input, vtkPolyData* output);
|
|
|
|
// Vars
|
|
int CurvatureType;
|
|
vtkTypeBool InvertMeanCurvature;
|
|
|
|
private:
|
|
vtkCurvatures(const vtkCurvatures&) = delete;
|
|
void operator=(const vtkCurvatures&) = delete;
|
|
};
|
|
|
|
#endif
|