You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
10 KiB
C++
275 lines
10 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkTetra.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkTetra
|
|
* @brief a 3D cell that represents a tetrahedron
|
|
*
|
|
* vtkTetra is a concrete implementation of vtkCell to represent a 3D
|
|
* tetrahedron. vtkTetra uses the standard isoparametric shape functions
|
|
* for a linear tetrahedron. The tetrahedron is defined by the four points
|
|
* (0-3); where (0,1,2) is the base of the tetrahedron which, using the
|
|
* right hand rule, forms a triangle whose normal points in the direction
|
|
* of the fourth point.
|
|
*
|
|
* @sa
|
|
* vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge
|
|
*/
|
|
|
|
#ifndef vtkTetra_h
|
|
#define vtkTetra_h
|
|
|
|
#include "vtkCell3D.h"
|
|
#include "vtkCommonDataModelModule.h" // For export macro
|
|
|
|
class vtkLine;
|
|
class vtkTriangle;
|
|
class vtkUnstructuredGrid;
|
|
class vtkIncrementalPointLocator;
|
|
|
|
class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D
|
|
{
|
|
public:
|
|
static vtkTetra* New();
|
|
vtkTypeMacro(vtkTetra, vtkCell3D);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
//@{
|
|
/**
|
|
* See vtkCell3D API for description of these methods.
|
|
*/
|
|
void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
|
|
// @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
|
|
VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override);
|
|
vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
|
|
// @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
|
|
VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override);
|
|
void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
|
|
vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override;
|
|
vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override;
|
|
vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override;
|
|
vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
|
|
bool GetCentroid(double centroid[3]) const override;
|
|
bool IsInsideOut() override;
|
|
//@}
|
|
|
|
/**
|
|
* static constexpr handle on the number of points.
|
|
*/
|
|
static constexpr vtkIdType NumberOfPoints = 4;
|
|
|
|
/**
|
|
* static contexpr handle on the number of faces.
|
|
*/
|
|
static constexpr vtkIdType NumberOfEdges = 6;
|
|
|
|
/**
|
|
* static contexpr handle on the number of edges.
|
|
*/
|
|
static constexpr vtkIdType NumberOfFaces = 4;
|
|
|
|
/**
|
|
* static contexpr handle on the maximum face size. It can also be used
|
|
* to know the number of faces adjacent to one face.
|
|
*/
|
|
static constexpr vtkIdType MaximumFaceSize = 3;
|
|
|
|
/**
|
|
* static constexpr handle on the maximum valence of this cell.
|
|
* The valence of a vertex is the number of incident edges (or equivalently faces)
|
|
* to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
|
|
*/
|
|
static constexpr vtkIdType MaximumValence = 3;
|
|
|
|
//@{
|
|
/**
|
|
* See the vtkCell API for descriptions of these methods.
|
|
*/
|
|
int GetCellType() override { return VTK_TETRA; }
|
|
int GetNumberOfEdges() override { return 6; }
|
|
int GetNumberOfFaces() override { return 4; }
|
|
vtkCell* GetEdge(int edgeId) override;
|
|
vtkCell* GetFace(int faceId) override;
|
|
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
|
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
|
vtkCellArray* connectivity, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
|
|
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
|
|
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
|
|
double& dist2, double weights[]) override;
|
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
|
double pcoords[3], int& subId) override;
|
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
|
void Derivatives(
|
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
|
double* GetParametricCoords() override;
|
|
//@}
|
|
|
|
/**
|
|
* Return the case table for table-based isocontouring (aka marching cubes
|
|
* style implementations). A linear 3D cell with N vertices will have 2**N
|
|
* cases. The returned case array lists three edges in order to produce one
|
|
* output triangle which may be repeated to generate multiple triangles. The
|
|
* list of cases terminates with a -1 entry.
|
|
*/
|
|
static int* GetTriangleCases(int caseId);
|
|
|
|
/**
|
|
* Returns the set of points that are on the boundary of the tetrahedron that
|
|
* are closest parametrically to the point specified. This may include faces,
|
|
* edges, or vertices.
|
|
*/
|
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
|
|
|
/**
|
|
* Return the center of the tetrahedron in parametric coordinates.
|
|
*/
|
|
int GetParametricCenter(double pcoords[3]) override;
|
|
|
|
/**
|
|
* Return the distance of the parametric coordinate provided to the
|
|
* cell. If inside the cell, a distance of zero is returned.
|
|
*/
|
|
double GetParametricDistance(const double pcoords[3]) override;
|
|
|
|
/**
|
|
* Compute the center of the tetrahedron,
|
|
*/
|
|
static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
|
|
|
|
/**
|
|
* Compute the circumcenter (center[3]) and radius squared (method
|
|
* return value) of a tetrahedron defined by the four points x1, x2,
|
|
* x3, and x4.
|
|
*/
|
|
static double Circumsphere(
|
|
double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
|
|
|
|
/**
|
|
* Compute the center (center[3]) and radius (method return value) of
|
|
* a sphere that just fits inside the faces of a tetrahedron defined
|
|
* by the four points x1, x2, x3, and x4.
|
|
*/
|
|
static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
|
|
|
|
/**
|
|
* Given a 3D point x[3], determine the barycentric coordinates of the point.
|
|
* Barycentric coordinates are a natural coordinate system for simplices that
|
|
* express a position as a linear combination of the vertices. For a
|
|
* tetrahedron, there are four barycentric coordinates (because there are
|
|
* four vertices), and the sum of the coordinates must equal 1. If a
|
|
* point x is inside a simplex, then all four coordinates will be strictly
|
|
* positive. If three coordinates are zero (so the fourth =1), then the
|
|
* point x is on a vertex. If two coordinates are zero, the point x is on an
|
|
* edge (and so on). In this method, you must specify the vertex coordinates
|
|
* x1->x4. Returns 0 if tetrahedron is degenerate.
|
|
*/
|
|
static int BarycentricCoords(
|
|
double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]);
|
|
|
|
/**
|
|
* Compute the volume of a tetrahedron defined by the four points
|
|
* p1, p2, p3, and p4.
|
|
*/
|
|
static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]);
|
|
|
|
/**
|
|
* Given parametric coordinates compute inverse Jacobian transformation
|
|
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
|
|
* function derivatives. Returns 0 if no inverse exists.
|
|
*/
|
|
int JacobianInverse(double** inverse, double derivs[12]);
|
|
|
|
static void InterpolationFunctions(const double pcoords[3], double weights[4]);
|
|
static void InterpolationDerivs(const double pcoords[3], double derivs[12]);
|
|
//@{
|
|
/**
|
|
* Compute the interpolation functions/derivatives
|
|
* (aka shape functions/derivatives)
|
|
*/
|
|
void InterpolateFunctions(const double pcoords[3], double weights[4]) override
|
|
{
|
|
vtkTetra::InterpolationFunctions(pcoords, weights);
|
|
}
|
|
void InterpolateDerivs(const double pcoords[3], double derivs[12]) override
|
|
{
|
|
vtkTetra::InterpolationDerivs(pcoords, derivs);
|
|
}
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
|
|
* Ids are related to the cell, not to the dataset.
|
|
*
|
|
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
|
|
* This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
|
|
* can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
|
|
*/
|
|
static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
|
|
static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(3);
|
|
//@}
|
|
|
|
/**
|
|
* Static method version of GetEdgeToAdjacentFaces.
|
|
*/
|
|
static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
|
|
|
|
/**
|
|
* Static method version of GetFaceToAdjacentFaces.
|
|
*/
|
|
static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetPointToIncidentEdgesArray.
|
|
*/
|
|
static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetPointToIncidentFacesArray.
|
|
*/
|
|
static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetPointToOneRingPoints.
|
|
*/
|
|
static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
|
|
|
|
/**
|
|
* Static method version of GetCentroid.
|
|
*/
|
|
static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
|
|
|
|
protected:
|
|
vtkTetra();
|
|
~vtkTetra() override;
|
|
|
|
vtkLine* Line;
|
|
vtkTriangle* Triangle;
|
|
|
|
private:
|
|
vtkTetra(const vtkTetra&) = delete;
|
|
void operator=(const vtkTetra&) = delete;
|
|
};
|
|
|
|
inline int vtkTetra::GetParametricCenter(double pcoords[3])
|
|
{
|
|
pcoords[0] = pcoords[1] = pcoords[2] = 0.25;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|