You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
10 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkTetra.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkTetra
* @brief a 3D cell that represents a tetrahedron
*
* vtkTetra is a concrete implementation of vtkCell to represent a 3D
* tetrahedron. vtkTetra uses the standard isoparametric shape functions
* for a linear tetrahedron. The tetrahedron is defined by the four points
* (0-3); where (0,1,2) is the base of the tetrahedron which, using the
* right hand rule, forms a triangle whose normal points in the direction
* of the fourth point.
*
* @sa
* vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge
*/
#ifndef vtkTetra_h
#define vtkTetra_h
#include "vtkCell3D.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkLine;
class vtkTriangle;
class vtkUnstructuredGrid;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D
{
public:
static vtkTetra* New();
vtkTypeMacro(vtkTetra, vtkCell3D);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* See vtkCell3D API for description of these methods.
*/
void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
// @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override);
vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
// @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override);
void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override;
vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override;
vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override;
vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
bool GetCentroid(double centroid[3]) const override;
bool IsInsideOut() override;
//@}
/**
* static constexpr handle on the number of points.
*/
static constexpr vtkIdType NumberOfPoints = 4;
/**
* static contexpr handle on the number of faces.
*/
static constexpr vtkIdType NumberOfEdges = 6;
/**
* static contexpr handle on the number of edges.
*/
static constexpr vtkIdType NumberOfFaces = 4;
/**
* static contexpr handle on the maximum face size. It can also be used
* to know the number of faces adjacent to one face.
*/
static constexpr vtkIdType MaximumFaceSize = 3;
/**
* static constexpr handle on the maximum valence of this cell.
* The valence of a vertex is the number of incident edges (or equivalently faces)
* to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
*/
static constexpr vtkIdType MaximumValence = 3;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_TETRA; }
int GetNumberOfEdges() override { return 6; }
int GetNumberOfFaces() override { return 4; }
vtkCell* GetEdge(int edgeId) override;
vtkCell* GetFace(int faceId) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* connectivity, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
//@}
/**
* Return the case table for table-based isocontouring (aka marching cubes
* style implementations). A linear 3D cell with N vertices will have 2**N
* cases. The returned case array lists three edges in order to produce one
* output triangle which may be repeated to generate multiple triangles. The
* list of cases terminates with a -1 entry.
*/
static int* GetTriangleCases(int caseId);
/**
* Returns the set of points that are on the boundary of the tetrahedron that
* are closest parametrically to the point specified. This may include faces,
* edges, or vertices.
*/
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
/**
* Return the center of the tetrahedron in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(const double pcoords[3]) override;
/**
* Compute the center of the tetrahedron,
*/
static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
/**
* Compute the circumcenter (center[3]) and radius squared (method
* return value) of a tetrahedron defined by the four points x1, x2,
* x3, and x4.
*/
static double Circumsphere(
double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
/**
* Compute the center (center[3]) and radius (method return value) of
* a sphere that just fits inside the faces of a tetrahedron defined
* by the four points x1, x2, x3, and x4.
*/
static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);
/**
* Given a 3D point x[3], determine the barycentric coordinates of the point.
* Barycentric coordinates are a natural coordinate system for simplices that
* express a position as a linear combination of the vertices. For a
* tetrahedron, there are four barycentric coordinates (because there are
* four vertices), and the sum of the coordinates must equal 1. If a
* point x is inside a simplex, then all four coordinates will be strictly
* positive. If three coordinates are zero (so the fourth =1), then the
* point x is on a vertex. If two coordinates are zero, the point x is on an
* edge (and so on). In this method, you must specify the vertex coordinates
* x1->x4. Returns 0 if tetrahedron is degenerate.
*/
static int BarycentricCoords(
double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]);
/**
* Compute the volume of a tetrahedron defined by the four points
* p1, p2, p3, and p4.
*/
static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]);
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives. Returns 0 if no inverse exists.
*/
int JacobianInverse(double** inverse, double derivs[12]);
static void InterpolationFunctions(const double pcoords[3], double weights[4]);
static void InterpolationDerivs(const double pcoords[3], double derivs[12]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[4]) override
{
vtkTetra::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[12]) override
{
vtkTetra::InterpolationDerivs(pcoords, derivs);
}
//@}
//@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
* can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(3);
//@}
/**
* Static method version of GetEdgeToAdjacentFaces.
*/
static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
/**
* Static method version of GetFaceToAdjacentFaces.
*/
static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToIncidentEdgesArray.
*/
static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToIncidentFacesArray.
*/
static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetPointToOneRingPoints.
*/
static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
/**
* Static method version of GetCentroid.
*/
static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
protected:
vtkTetra();
~vtkTetra() override;
vtkLine* Line;
vtkTriangle* Triangle;
private:
vtkTetra(const vtkTetra&) = delete;
void operator=(const vtkTetra&) = delete;
};
inline int vtkTetra::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = pcoords[2] = 0.25;
return 0;
}
#endif