You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.1 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkParametricRoman.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkParametricRoman
* @brief Generate Steiner's Roman Surface.
*
* vtkParametricRoman generates Steiner's Roman Surface.
*
* For further information about this surface, please consult the
* technical description "Parametric surfaces" in http://www.vtk.org/publications
* in the "VTK Technical Documents" section in the VTk.org web pages.
*
* @par Thanks:
* Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the
* class.
*
*/
#ifndef vtkParametricRoman_h
#define vtkParametricRoman_h
#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricRoman : public vtkParametricFunction
{
public:
vtkTypeMacro(vtkParametricRoman, vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Return the parametric dimension of the class.
*/
int GetDimension() override { return 2; }
/**
* Construct Steiner's Roman Surface with the following parameters:
* MinimumU = 0, MaximumU = Pi,
* MinimumV = 0, MaximumV = Pi,
* JoinU = 1, JoinV = 1,
* TwistU = 1, TwistV = 0;
* ClockwiseOrdering = 0,
* DerivativesAvailable = 1,
* Radius = 1
*/
static vtkParametricRoman* New();
//@{
/**
* Set/Get the radius. Default is 1.
*/
vtkSetMacro(Radius, double);
vtkGetMacro(Radius, double);
//@}
/**
* Steiner's Roman Surface
* This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
* as Pt. It also returns the partial derivatives Du and Dv.
* \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
* Then the normal is \f$N = Du X Dv\f$ .
*/
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;
/**
* Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
* uvw are the parameters with Pt being the Cartesian point,
* Duvw are the derivatives of this point with respect to u, v and w.
* Pt, Duvw are obtained from Evaluate().
* This function is only called if the ScalarMode has the value
* vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
* If the user does not need to calculate a scalar, then the
* instantiated function should return zero.
*/
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;
protected:
vtkParametricRoman();
~vtkParametricRoman() override;
// Variables
double Radius;
private:
vtkParametricRoman(const vtkParametricRoman&) = delete;
void operator=(const vtkParametricRoman&) = delete;
};
#endif