You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

82 lines
2.7 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkParametricPseudosphere.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkParametricPseudosphere
* @brief Generate a pseudosphere.
*
* vtkParametricPseudosphere generates a parametric pseudosphere. The
* pseudosphere is generated as a surface of revolution of the tractrix about
* it's asymptote, and is a surface of constant negative Gaussian curvature.
* You can find out more about this interesting surface at
* <a href="http://mathworld.wolfram.com/Pseudosphere.html">Math World</a>.
* @par Thanks:
* Tim Meehan
*/
#ifndef vtkParametricPseudosphere_h
#define vtkParametricPseudosphere_h
#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricPseudosphere : public vtkParametricFunction
{
public:
vtkTypeMacro(vtkParametricPseudosphere, vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Construct a pseudosphere surface with the following parameters:
* (MinimumU, MaximumU) = (-5., 5.),
* (MinimumV, MaximumV) = (-pi, pi),
* JoinU = 0, JoinV = 1,
* TwistU = 0, TwistV = 0;
* ClockwiseOrdering = 0,
* DerivativesAvailable = 1,
*/
static vtkParametricPseudosphere* New();
/**
* Return the parametric dimension of the class.
*/
int GetDimension() override { return 2; }
/**
* Pseudosphere surface.
* This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
* as Pt. It also returns the partial derivatives Du and Dv.
* \f$Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv)\f$ .
* Then the normal is \f$N = D_u\vec{f} \times D_v\vec{f}\f$ .
*/
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;
/**
* Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
* This method simply returns 0.
*/
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;
protected:
vtkParametricPseudosphere();
~vtkParametricPseudosphere() override;
private:
vtkParametricPseudosphere(const vtkParametricPseudosphere&) = delete;
void operator=(const vtkParametricPseudosphere&) = delete;
};
#endif