You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.5 KiB
C++
103 lines
3.5 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkParametricKlein.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkParametricKlein
|
|
* @brief Generates a "classical" representation of a Klein bottle.
|
|
*
|
|
* vtkParametricKlein generates a "classical" representation of a Klein
|
|
* bottle. A Klein bottle is a closed surface with no interior and only one
|
|
* surface. It is unrealisable in 3 dimensions without intersecting
|
|
* surfaces. It can be
|
|
* realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by:
|
|
*
|
|
* - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$
|
|
*
|
|
* The classical representation of the immersion in \f$R^3\f$ is returned by this function.
|
|
*
|
|
*
|
|
* For further information about this surface, please consult the
|
|
* technical description "Parametric surfaces" in http://www.vtk.org/publications
|
|
* in the "VTK Technical Documents" section in the VTk.org web pages.
|
|
*
|
|
* @par Thanks:
|
|
* Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the
|
|
* class.
|
|
*
|
|
*/
|
|
|
|
#ifndef vtkParametricKlein_h
|
|
#define vtkParametricKlein_h
|
|
|
|
#include "vtkCommonComputationalGeometryModule.h" // For export macro
|
|
#include "vtkParametricFunction.h"
|
|
|
|
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricKlein : public vtkParametricFunction
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkParametricKlein, vtkParametricFunction);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Construct a Klein Bottle with the following parameters:
|
|
* MinimumU = 0, MaximumU = 2*Pi,
|
|
* MinimumV = -Pi, MaximumV = Pi,
|
|
* JoinU = 0, JoinV = 1,
|
|
* TwistU = 0, TwistV = 0,
|
|
* ClockwiseOrdering = 0,
|
|
* DerivativesAvailable = 1,
|
|
*/
|
|
static vtkParametricKlein* New(); //! Initialise the parameters for the Klein bottle
|
|
|
|
/**
|
|
* Return the parametric dimension of the class.
|
|
*/
|
|
int GetDimension() override { return 2; }
|
|
|
|
/**
|
|
* A Klein bottle.
|
|
|
|
* This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
|
|
* as Pt. It also returns the partial derivatives Du and Dv.
|
|
* \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
|
|
* Then the normal is \f$N = Du X Dv\f$ .
|
|
*/
|
|
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;
|
|
|
|
/**
|
|
* Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
|
|
|
|
* uvw are the parameters with Pt being the cartesian point,
|
|
* Duvw are the derivatives of this point with respect to u, v and w.
|
|
* Pt, Duvw are obtained from Evaluate().
|
|
|
|
* This function is only called if the ScalarMode has the value
|
|
* vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
|
|
|
|
* If the user does not need to calculate a scalar, then the
|
|
* instantiated function should return zero.
|
|
*/
|
|
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;
|
|
|
|
protected:
|
|
vtkParametricKlein();
|
|
~vtkParametricKlein() override;
|
|
|
|
private:
|
|
vtkParametricKlein(const vtkParametricKlein&) = delete;
|
|
void operator=(const vtkParametricKlein&) = delete;
|
|
};
|
|
|
|
#endif
|