You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
6.3 KiB
C++
161 lines
6.3 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkMultiCorrelativeStatistics.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/*-------------------------------------------------------------------------
|
|
Copyright 2010 Sandia Corporation.
|
|
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
|
|
the U.S. Government retains certain rights in this software.
|
|
-------------------------------------------------------------------------*/
|
|
/**
|
|
* @class vtkMultiCorrelativeStatistics
|
|
* @brief A class for multivariate linear correlation
|
|
*
|
|
*
|
|
* Given a selection of sets of columns of interest, this class provides the
|
|
* following functionalities, depending on the operation in which it is executed:
|
|
* * Learn: calculates means, unbiased variance and covariance estimators of
|
|
* column pairs coefficient.
|
|
* More precisely, Learn calculates the averages and centered
|
|
* variance/covariance sums; if \p finalize is set to true (default),
|
|
* the final statistics are calculated.
|
|
* The output metadata on port OUTPUT_MODEL is a multiblock dataset containing at a minimum
|
|
* one vtkTable holding the raw sums in a sparse matrix style. If \a finalize is
|
|
* true, then one additional vtkTable will be present for each requested set of
|
|
* column correlations. These additional tables contain column averages, the
|
|
* upper triangular portion of the covariance matrix (in the upper right hand
|
|
* portion of the table) and the Cholesky decomposition of the covariance matrix
|
|
* (in the lower portion of the table beneath the covariance triangle).
|
|
* The leftmost column will be a vector of column averages.
|
|
* The last entry in the column averages vector is the number of samples.
|
|
* As an example, consider a request for a 3-column correlation with columns
|
|
* named ColA, ColB, and ColC.
|
|
* The resulting table will look like this:
|
|
* <pre>
|
|
* Column |Mean |ColA |ColB |ColC
|
|
* --------+---------+---------+---------+---------
|
|
* ColA |avg(A) |cov(A,A) |cov(A,B) |cov(A,C)
|
|
* ColB |avg(B) |chol(1,1)|cov(B,B) |cov(B,C)
|
|
* ColC |avg(C) |chol(2,1)|chol(2,2)|cov(C,C)
|
|
* Cholesky|length(A)|chol(3,1)|chol(3,2)|chol(3,3)
|
|
* </pre>
|
|
* The mean point and the covariance matrix can be replaced by the median point and the
|
|
* MAD matrix (Median Absolute Deviation) thanks to the MedianAbsoluteDeviation boolean.
|
|
* In this mode, the resulting table will look like this:
|
|
* <pre>
|
|
* Column |Mean |ColA |ColB |ColC
|
|
* --------+---------+---------+---------+---------
|
|
* ColA |med(A) |MAD(A,A) |MAD(A,B) |MAD(A,C)
|
|
* ColB |med(B) |chol(1,1)|MAD(B,B) |MAD(B,C)
|
|
* ColC |med(C) |chol(2,1)|chol(2,2)|MAD(C,C)
|
|
* Cholesky|length(A)|chol(3,1)|chol(3,2)|chol(3,3)
|
|
* </pre>
|
|
* The Median Absolute Deviation is known to be more robust than the covariance. It is
|
|
* used in the robust PCA computation for instance.
|
|
* * Assess: given a set of results matrices as specified above in input port INPUT_MODEL and
|
|
* tabular data on input port INPUT_DATA that contains column names matching those
|
|
* of the tables on input port INPUT_MODEL, the assess mode computes the relative
|
|
* deviation of each observation in port INPUT_DATA's table according to the linear
|
|
* correlations implied by each table in port INPUT_MODEL.
|
|
*
|
|
* @par Thanks:
|
|
* Thanks to Philippe Pebay, Jackson Mayo, and David Thompson of
|
|
* Sandia National Laboratories for implementing this class.
|
|
* Updated by Philippe Pebay, Kitware SAS 2012
|
|
* Updated by Tristan Coulange and Joachim Pouderoux, Kitware SAS 2013
|
|
*/
|
|
|
|
#ifndef vtkMultiCorrelativeStatistics_h
|
|
#define vtkMultiCorrelativeStatistics_h
|
|
|
|
#include "vtkFiltersStatisticsModule.h" // For export macro
|
|
#include "vtkStatisticsAlgorithm.h"
|
|
|
|
class vtkDoubleArray;
|
|
class vtkMultiBlockDataSet;
|
|
class vtkOrderStatistics;
|
|
class vtkVariant;
|
|
|
|
class VTKFILTERSSTATISTICS_EXPORT vtkMultiCorrelativeStatistics : public vtkStatisticsAlgorithm
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkMultiCorrelativeStatistics, vtkStatisticsAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
static vtkMultiCorrelativeStatistics* New();
|
|
|
|
/**
|
|
* Given a collection of models, calculate aggregate model
|
|
*/
|
|
void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) override;
|
|
|
|
//@{
|
|
/**
|
|
* If set to true, the covariance matrix is replaced by
|
|
* the Median Absolute Deviation matrix.
|
|
* Default is false.
|
|
*/
|
|
vtkSetMacro(MedianAbsoluteDeviation, bool);
|
|
vtkGetMacro(MedianAbsoluteDeviation, bool);
|
|
vtkBooleanMacro(MedianAbsoluteDeviation, bool);
|
|
//@}
|
|
|
|
protected:
|
|
vtkMultiCorrelativeStatistics();
|
|
~vtkMultiCorrelativeStatistics() override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Learn option.
|
|
*/
|
|
void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Derive option.
|
|
*/
|
|
void Derive(vtkMultiBlockDataSet*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Assess option.
|
|
*/
|
|
void Assess(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Test option.
|
|
*/
|
|
void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override { return; }
|
|
|
|
/**
|
|
* Provide the appropriate assessment functor.
|
|
*/
|
|
void SelectAssessFunctor(vtkTable* inData, vtkDataObject* inMeta, vtkStringArray* rowNames,
|
|
AssessFunctor*& dfunc) override;
|
|
|
|
/**
|
|
* Computes the median of inData with vtkOrderStatistics.
|
|
*/
|
|
virtual void ComputeMedian(vtkTable* inData, vtkTable* outData);
|
|
|
|
/**
|
|
* Return a new vtkOrderStatistics instance.
|
|
* Used by derived class to return a derivate class instead.
|
|
*/
|
|
virtual vtkOrderStatistics* CreateOrderStatisticsInstance();
|
|
|
|
bool MedianAbsoluteDeviation;
|
|
|
|
private:
|
|
vtkMultiCorrelativeStatistics(const vtkMultiCorrelativeStatistics&) = delete;
|
|
void operator=(const vtkMultiCorrelativeStatistics&) = delete;
|
|
};
|
|
|
|
#endif
|