You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

201 lines
6.8 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkDiscreteFlyingEdges3D.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkDiscreteFlyingEdges3D
* @brief generate isosurface from 3D image data (volume)
*
* vtkDiscreteFlyingEdges3D creates output representations of label maps
* (e.g., segmented volumes) using a variation of the flying edges
* algorithm. The input is a 3D image (volume( where each point is labeled
* (integer labels are preferred to real values), and the output data is
* polygonal data representing labeled regions. (Note that on output each
* region [corresponding to a different contour value] is represented
* independently; i.e., points are not shared between regions even if they
* are coincident.)
*
* This filter is similar to but produces different results than the filter
* vtkDiscreteMarchingCubes. This filter can produce output normals, and each
* labeled region is completely disconnected from neighboring regions
* (coincident points are not merged). Both algorithms interpolate edges at
* the halfway point between vertices with different segmentation labels.
*
* See the paper "Flying Edges: A High-Performance Scalable Isocontouring
* Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL.
*
* @warning
* This filter is specialized to 3D volumes. This implementation can produce
* degenerate triangles (i.e., zero-area triangles).
*
* @warning
* This class has been threaded with vtkSMPTools. Using TBB or other
* non-sequential type (set in the CMake variable
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
*
* @sa
* vtkDiscreteMarchingCubes vtkDiscreteFlyingEdges2D vtkDiscreteFlyingEdges3D
*/
#ifndef vtkDiscreteFlyingEdges3D_h
#define vtkDiscreteFlyingEdges3D_h
#include "vtkContourValues.h" // Passes calls through
#include "vtkFiltersGeneralModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
class vtkImageData;
class VTKFILTERSGENERAL_EXPORT vtkDiscreteFlyingEdges3D : public vtkPolyDataAlgorithm
{
public:
static vtkDiscreteFlyingEdges3D* New();
vtkTypeMacro(vtkDiscreteFlyingEdges3D, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Because we delegate to vtkContourValues.
*/
vtkMTimeType GetMTime() override;
//@{
/**
* Set/Get the computation of normals. Normal computation is fairly
* expensive in both time and storage. If the output data will be processed
* by filters that modify topology or geometry, it may be wise to turn
* Normals and Gradients off.
*/
vtkSetMacro(ComputeNormals, int);
vtkGetMacro(ComputeNormals, int);
vtkBooleanMacro(ComputeNormals, int);
//@}
//@{
/**
* Set/Get the computation of gradients. Gradient computation is fairly
* expensive in both time and storage. Note that if ComputeNormals is on,
* gradients will have to be calculated, but will not be stored in the
* output dataset. If the output data will be processed by filters that
* modify topology or geometry, it may be wise to turn Normals and
* Gradients off.
*/
vtkSetMacro(ComputeGradients, int);
vtkGetMacro(ComputeGradients, int);
vtkBooleanMacro(ComputeGradients, int);
//@}
//@{
/**
* Set/Get the computation of scalars.
*/
vtkSetMacro(ComputeScalars, int);
vtkGetMacro(ComputeScalars, int);
vtkBooleanMacro(ComputeScalars, int);
//@}
//@{
/**
* Indicate whether to interpolate other attribute data. That is, as the
* isosurface is generated, interpolate all point attribute data across
* the edge. This is independent of scalar interpolation, which is
* controlled by the ComputeScalars flag.
*/
vtkSetMacro(InterpolateAttributes, int);
vtkGetMacro(InterpolateAttributes, int);
vtkBooleanMacro(InterpolateAttributes, int);
//@}
/**
* Set a particular contour value at contour number i. The index i ranges
* between 0<=i<NumberOfContours.
*/
void SetValue(int i, double value) { this->ContourValues->SetValue(i, value); }
/**
* Get the ith contour value.
*/
double GetValue(int i) { return this->ContourValues->GetValue(i); }
/**
* Get a pointer to an array of contour values. There will be
* GetNumberOfContours() values in the list.
*/
double* GetValues() { return this->ContourValues->GetValues(); }
/**
* Fill a supplied list with contour values. There will be
* GetNumberOfContours() values in the list. Make sure you allocate
* enough memory to hold the list.
*/
void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); }
/**
* Set the number of contours to place into the list. You only really
* need to use this method to reduce list size. The method SetValue()
* will automatically increase list size as needed.
*/
void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); }
/**
* Get the number of contours in the list of contour values.
*/
vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); }
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double range[2])
{
this->ContourValues->GenerateValues(numContours, range);
}
/**
* Generate numContours equally spaced contour values between specified
* range. Contour values will include min/max range values.
*/
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
{
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
}
//@{
/**
* Set/get which component of the scalar array to contour on; defaults to 0.
*/
vtkSetMacro(ArrayComponent, int);
vtkGetMacro(ArrayComponent, int);
//@}
protected:
vtkDiscreteFlyingEdges3D();
~vtkDiscreteFlyingEdges3D() override;
int ComputeNormals;
int ComputeGradients;
int ComputeScalars;
int InterpolateAttributes;
int ArrayComponent;
vtkContourValues* ContourValues;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
private:
vtkDiscreteFlyingEdges3D(const vtkDiscreteFlyingEdges3D&) = delete;
void operator=(const vtkDiscreteFlyingEdges3D&) = delete;
};
#endif