You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
6.8 KiB
C++
201 lines
6.8 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkDiscreteFlyingEdges3D.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkDiscreteFlyingEdges3D
|
|
* @brief generate isosurface from 3D image data (volume)
|
|
*
|
|
* vtkDiscreteFlyingEdges3D creates output representations of label maps
|
|
* (e.g., segmented volumes) using a variation of the flying edges
|
|
* algorithm. The input is a 3D image (volume( where each point is labeled
|
|
* (integer labels are preferred to real values), and the output data is
|
|
* polygonal data representing labeled regions. (Note that on output each
|
|
* region [corresponding to a different contour value] is represented
|
|
* independently; i.e., points are not shared between regions even if they
|
|
* are coincident.)
|
|
*
|
|
* This filter is similar to but produces different results than the filter
|
|
* vtkDiscreteMarchingCubes. This filter can produce output normals, and each
|
|
* labeled region is completely disconnected from neighboring regions
|
|
* (coincident points are not merged). Both algorithms interpolate edges at
|
|
* the halfway point between vertices with different segmentation labels.
|
|
*
|
|
* See the paper "Flying Edges: A High-Performance Scalable Isocontouring
|
|
* Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL.
|
|
*
|
|
* @warning
|
|
* This filter is specialized to 3D volumes. This implementation can produce
|
|
* degenerate triangles (i.e., zero-area triangles).
|
|
*
|
|
* @warning
|
|
* This class has been threaded with vtkSMPTools. Using TBB or other
|
|
* non-sequential type (set in the CMake variable
|
|
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
|
|
*
|
|
* @sa
|
|
* vtkDiscreteMarchingCubes vtkDiscreteFlyingEdges2D vtkDiscreteFlyingEdges3D
|
|
*/
|
|
|
|
#ifndef vtkDiscreteFlyingEdges3D_h
|
|
#define vtkDiscreteFlyingEdges3D_h
|
|
|
|
#include "vtkContourValues.h" // Passes calls through
|
|
#include "vtkFiltersGeneralModule.h" // For export macro
|
|
#include "vtkPolyDataAlgorithm.h"
|
|
|
|
class vtkImageData;
|
|
|
|
class VTKFILTERSGENERAL_EXPORT vtkDiscreteFlyingEdges3D : public vtkPolyDataAlgorithm
|
|
{
|
|
public:
|
|
static vtkDiscreteFlyingEdges3D* New();
|
|
vtkTypeMacro(vtkDiscreteFlyingEdges3D, vtkPolyDataAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Because we delegate to vtkContourValues.
|
|
*/
|
|
vtkMTimeType GetMTime() override;
|
|
|
|
//@{
|
|
/**
|
|
* Set/Get the computation of normals. Normal computation is fairly
|
|
* expensive in both time and storage. If the output data will be processed
|
|
* by filters that modify topology or geometry, it may be wise to turn
|
|
* Normals and Gradients off.
|
|
*/
|
|
vtkSetMacro(ComputeNormals, int);
|
|
vtkGetMacro(ComputeNormals, int);
|
|
vtkBooleanMacro(ComputeNormals, int);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/Get the computation of gradients. Gradient computation is fairly
|
|
* expensive in both time and storage. Note that if ComputeNormals is on,
|
|
* gradients will have to be calculated, but will not be stored in the
|
|
* output dataset. If the output data will be processed by filters that
|
|
* modify topology or geometry, it may be wise to turn Normals and
|
|
* Gradients off.
|
|
*/
|
|
vtkSetMacro(ComputeGradients, int);
|
|
vtkGetMacro(ComputeGradients, int);
|
|
vtkBooleanMacro(ComputeGradients, int);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/Get the computation of scalars.
|
|
*/
|
|
vtkSetMacro(ComputeScalars, int);
|
|
vtkGetMacro(ComputeScalars, int);
|
|
vtkBooleanMacro(ComputeScalars, int);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Indicate whether to interpolate other attribute data. That is, as the
|
|
* isosurface is generated, interpolate all point attribute data across
|
|
* the edge. This is independent of scalar interpolation, which is
|
|
* controlled by the ComputeScalars flag.
|
|
*/
|
|
vtkSetMacro(InterpolateAttributes, int);
|
|
vtkGetMacro(InterpolateAttributes, int);
|
|
vtkBooleanMacro(InterpolateAttributes, int);
|
|
//@}
|
|
|
|
/**
|
|
* Set a particular contour value at contour number i. The index i ranges
|
|
* between 0<=i<NumberOfContours.
|
|
*/
|
|
void SetValue(int i, double value) { this->ContourValues->SetValue(i, value); }
|
|
|
|
/**
|
|
* Get the ith contour value.
|
|
*/
|
|
double GetValue(int i) { return this->ContourValues->GetValue(i); }
|
|
|
|
/**
|
|
* Get a pointer to an array of contour values. There will be
|
|
* GetNumberOfContours() values in the list.
|
|
*/
|
|
double* GetValues() { return this->ContourValues->GetValues(); }
|
|
|
|
/**
|
|
* Fill a supplied list with contour values. There will be
|
|
* GetNumberOfContours() values in the list. Make sure you allocate
|
|
* enough memory to hold the list.
|
|
*/
|
|
void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); }
|
|
|
|
/**
|
|
* Set the number of contours to place into the list. You only really
|
|
* need to use this method to reduce list size. The method SetValue()
|
|
* will automatically increase list size as needed.
|
|
*/
|
|
void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); }
|
|
|
|
/**
|
|
* Get the number of contours in the list of contour values.
|
|
*/
|
|
vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); }
|
|
|
|
/**
|
|
* Generate numContours equally spaced contour values between specified
|
|
* range. Contour values will include min/max range values.
|
|
*/
|
|
void GenerateValues(int numContours, double range[2])
|
|
{
|
|
this->ContourValues->GenerateValues(numContours, range);
|
|
}
|
|
|
|
/**
|
|
* Generate numContours equally spaced contour values between specified
|
|
* range. Contour values will include min/max range values.
|
|
*/
|
|
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
|
|
{
|
|
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
|
|
}
|
|
|
|
//@{
|
|
/**
|
|
* Set/get which component of the scalar array to contour on; defaults to 0.
|
|
*/
|
|
vtkSetMacro(ArrayComponent, int);
|
|
vtkGetMacro(ArrayComponent, int);
|
|
//@}
|
|
|
|
protected:
|
|
vtkDiscreteFlyingEdges3D();
|
|
~vtkDiscreteFlyingEdges3D() override;
|
|
|
|
int ComputeNormals;
|
|
int ComputeGradients;
|
|
int ComputeScalars;
|
|
int InterpolateAttributes;
|
|
int ArrayComponent;
|
|
vtkContourValues* ContourValues;
|
|
|
|
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
int FillInputPortInformation(int port, vtkInformation* info) override;
|
|
|
|
private:
|
|
vtkDiscreteFlyingEdges3D(const vtkDiscreteFlyingEdges3D&) = delete;
|
|
void operator=(const vtkDiscreteFlyingEdges3D&) = delete;
|
|
};
|
|
|
|
#endif
|