You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.8 KiB
C++
168 lines
5.8 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkDescriptiveStatistics.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/*-------------------------------------------------------------------------
|
|
Copyright 2010 Sandia Corporation.
|
|
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
|
|
the U.S. Government retains certain rights in this software.
|
|
-------------------------------------------------------------------------*/
|
|
/**
|
|
* @class vtkDescriptiveStatistics
|
|
* @brief A class for univariate descriptive statistics
|
|
*
|
|
*
|
|
* Given a selection of columns of interest in an input data table, this
|
|
* class provides the following functionalities, depending on the chosen
|
|
* execution options:
|
|
* * Learn: calculate extremal values, sample mean, and M2, M3, and M4 aggregates
|
|
* (cf. P. Pebay, Formulas for robust, one-pass parallel computation of covariances
|
|
* and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep 2008,
|
|
* http://infoserve.sandia.gov/sand_doc/2008/086212.pdf for details)
|
|
* * Derive: calculate unbiased variance estimator, standard deviation estimator,
|
|
* two skewness estimators, and two kurtosis excess estimators.
|
|
* * Assess: given an input data set, a reference value and a non-negative deviation,
|
|
* mark each datum with corresponding relative deviation (1-dimensional Mahlanobis
|
|
* distance). If the deviation is zero, then mark each datum which are equal to the
|
|
* reference value with 0, and all others with 1. By default, the reference value
|
|
* and the deviation are, respectively, the mean and the standard deviation of the
|
|
* input model.
|
|
* * Test: calculate Jarque-Bera statistic and, if VTK to R interface is available,
|
|
* retrieve corresponding p-value for normality testing.
|
|
*
|
|
* @par Thanks:
|
|
* Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
|
|
* for implementing this class.
|
|
* Updated by Philippe Pebay, Kitware SAS 2012
|
|
*/
|
|
|
|
#ifndef vtkDescriptiveStatistics_h
|
|
#define vtkDescriptiveStatistics_h
|
|
|
|
#include "vtkFiltersStatisticsModule.h" // For export macro
|
|
#include "vtkStatisticsAlgorithm.h"
|
|
|
|
class vtkMultiBlockDataSet;
|
|
class vtkStringArray;
|
|
class vtkTable;
|
|
class vtkVariant;
|
|
class vtkDoubleArray;
|
|
|
|
class VTKFILTERSSTATISTICS_EXPORT vtkDescriptiveStatistics : public vtkStatisticsAlgorithm
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkDescriptiveStatistics, vtkStatisticsAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
static vtkDescriptiveStatistics* New();
|
|
|
|
//@{
|
|
/**
|
|
* Set/get whether the unbiased estimator for the variance should be used, or if
|
|
* the population variance will be calculated.
|
|
* The default is that the unbiased estimator will be used.
|
|
*/
|
|
vtkSetMacro(UnbiasedVariance, vtkTypeBool);
|
|
vtkGetMacro(UnbiasedVariance, vtkTypeBool);
|
|
vtkBooleanMacro(UnbiasedVariance, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/get whether the G1 estimator for the skewness should be used, or if
|
|
* the g1 skewness will be calculated.
|
|
* The default is that the g1 skewness estimator will be used.
|
|
*/
|
|
vtkSetMacro(G1Skewness, vtkTypeBool);
|
|
vtkGetMacro(G1Skewness, vtkTypeBool);
|
|
vtkBooleanMacro(G1Skewness, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/get whether the G2 estimator for the kurtosis should be used, or if
|
|
* the g2 kurtosis will be calculated.
|
|
* The default is that the g2 kurtosis estimator will be used.
|
|
*/
|
|
vtkSetMacro(G2Kurtosis, vtkTypeBool);
|
|
vtkGetMacro(G2Kurtosis, vtkTypeBool);
|
|
vtkBooleanMacro(G2Kurtosis, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set/get whether the deviations returned should be signed, or should
|
|
* only have their magnitude reported.
|
|
* The default is that signed deviations will be computed.
|
|
*/
|
|
vtkSetMacro(SignedDeviations, vtkTypeBool);
|
|
vtkGetMacro(SignedDeviations, vtkTypeBool);
|
|
vtkBooleanMacro(SignedDeviations, vtkTypeBool);
|
|
//@}
|
|
|
|
/**
|
|
* Given a collection of models, calculate aggregate model
|
|
*/
|
|
void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) override;
|
|
|
|
protected:
|
|
vtkDescriptiveStatistics();
|
|
~vtkDescriptiveStatistics() override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Learn option, given some input Data
|
|
* NB: input parameters are unused.
|
|
*/
|
|
void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Derive option.
|
|
*/
|
|
void Derive(vtkMultiBlockDataSet*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Test option.
|
|
*/
|
|
void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) override;
|
|
|
|
/**
|
|
* Execute the calculations required by the Assess option.
|
|
*/
|
|
void Assess(vtkTable* inData, vtkMultiBlockDataSet* inMeta, vtkTable* outData) override
|
|
{
|
|
this->Superclass::Assess(inData, inMeta, outData, 1);
|
|
}
|
|
|
|
/**
|
|
* Calculate p-value. This will be overridden using the object factory with an
|
|
* R implementation if R is present.
|
|
*/
|
|
virtual vtkDoubleArray* CalculatePValues(vtkDoubleArray*);
|
|
|
|
/**
|
|
* Provide the appropriate assessment functor.
|
|
*/
|
|
void SelectAssessFunctor(vtkTable* outData, vtkDataObject* inMeta, vtkStringArray* rowNames,
|
|
AssessFunctor*& dfunc) override;
|
|
|
|
vtkTypeBool UnbiasedVariance;
|
|
vtkTypeBool G1Skewness;
|
|
vtkTypeBool G2Kurtosis;
|
|
vtkTypeBool SignedDeviations;
|
|
|
|
private:
|
|
vtkDescriptiveStatistics(const vtkDescriptiveStatistics&) = delete;
|
|
void operator=(const vtkDescriptiveStatistics&) = delete;
|
|
};
|
|
|
|
#endif
|