You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
9.2 KiB
C++
272 lines
9.2 KiB
C++
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: vtkCutter.h
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
/**
|
|
* @class vtkCutter
|
|
* @brief Cut vtkDataSet with user-specified implicit function
|
|
*
|
|
* vtkCutter is a filter to cut through data using any subclass of
|
|
* vtkImplicitFunction. That is, a polygonal surface is created
|
|
* corresponding to the implicit function F(x,y,z) = value(s), where
|
|
* you can specify one or more values used to cut with.
|
|
*
|
|
* In VTK, cutting means reducing a cell of dimension N to a cut surface
|
|
* of dimension N-1. For example, a tetrahedron when cut by a plane (i.e.,
|
|
* vtkPlane implicit function) will generate triangles. (In comparison,
|
|
* clipping takes a N dimensional cell and creates N dimension primitives.)
|
|
*
|
|
* vtkCutter is generally used to "slice-through" a dataset, generating
|
|
* a surface that can be visualized. It is also possible to use vtkCutter
|
|
* to do a form of volume rendering. vtkCutter does this by generating
|
|
* multiple cut surfaces (usually planes) which are ordered (and rendered)
|
|
* from back-to-front. The surfaces are set translucent to give a
|
|
* volumetric rendering effect.
|
|
*
|
|
* Note that data can be cut using either 1) the scalar values associated
|
|
* with the dataset or 2) an implicit function associated with this class.
|
|
* By default, if an implicit function is set it is used to clip the data
|
|
* set, otherwise the dataset scalars are used to perform the clipping.
|
|
*
|
|
* @sa
|
|
* vtkImplicitFunction vtkClipPolyData
|
|
*/
|
|
|
|
#ifndef vtkCutter_h
|
|
#define vtkCutter_h
|
|
|
|
#include "vtkFiltersCoreModule.h" // For export macro
|
|
#include "vtkPolyDataAlgorithm.h"
|
|
|
|
#include "vtkContourValues.h" // Needed for inline methods
|
|
|
|
#define VTK_SORT_BY_VALUE 0
|
|
#define VTK_SORT_BY_CELL 1
|
|
|
|
class vtkImplicitFunction;
|
|
class vtkIncrementalPointLocator;
|
|
class vtkSynchronizedTemplates3D;
|
|
class vtkSynchronizedTemplatesCutter3D;
|
|
class vtkGridSynchronizedTemplates3D;
|
|
class vtkRectilinearSynchronizedTemplates;
|
|
|
|
class VTKFILTERSCORE_EXPORT vtkCutter : public vtkPolyDataAlgorithm
|
|
{
|
|
public:
|
|
vtkTypeMacro(vtkCutter, vtkPolyDataAlgorithm);
|
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
|
|
|
/**
|
|
* Construct with user-specified implicit function; initial value of 0.0; and
|
|
* generating cut scalars turned off.
|
|
*/
|
|
static vtkCutter* New();
|
|
|
|
/**
|
|
* Set a particular contour value at contour number i. The index i ranges
|
|
* between 0<=i<NumberOfContours.
|
|
*/
|
|
void SetValue(int i, double value) { this->ContourValues->SetValue(i, value); }
|
|
|
|
/**
|
|
* Get the ith contour value.
|
|
*/
|
|
double GetValue(int i) { return this->ContourValues->GetValue(i); }
|
|
|
|
/**
|
|
* Get a pointer to an array of contour values. There will be
|
|
* GetNumberOfContours() values in the list.
|
|
*/
|
|
double* GetValues() { return this->ContourValues->GetValues(); }
|
|
|
|
/**
|
|
* Fill a supplied list with contour values. There will be
|
|
* GetNumberOfContours() values in the list. Make sure you allocate
|
|
* enough memory to hold the list.
|
|
*/
|
|
void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); }
|
|
|
|
/**
|
|
* Set the number of contours to place into the list. You only really
|
|
* need to use this method to reduce list size. The method SetValue()
|
|
* will automatically increase list size as needed.
|
|
*/
|
|
void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); }
|
|
|
|
/**
|
|
* Get the number of contours in the list of contour values.
|
|
*/
|
|
vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); }
|
|
|
|
/**
|
|
* Generate numContours equally spaced contour values between specified
|
|
* range. Contour values will include min/max range values.
|
|
*/
|
|
void GenerateValues(int numContours, double range[2])
|
|
{
|
|
this->ContourValues->GenerateValues(numContours, range);
|
|
}
|
|
|
|
/**
|
|
* Generate numContours equally spaced contour values between specified
|
|
* range. Contour values will include min/max range values.
|
|
*/
|
|
void GenerateValues(int numContours, double rangeStart, double rangeEnd)
|
|
{
|
|
this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd);
|
|
}
|
|
|
|
/**
|
|
* Override GetMTime because we delegate to vtkContourValues and refer to
|
|
* vtkImplicitFunction.
|
|
*/
|
|
vtkMTimeType GetMTime() override;
|
|
|
|
//@{
|
|
/**
|
|
* Specify the implicit function to perform the cutting.
|
|
*/
|
|
virtual void SetCutFunction(vtkImplicitFunction*);
|
|
vtkGetObjectMacro(CutFunction, vtkImplicitFunction);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* If this flag is enabled, then the output scalar values will be
|
|
* interpolated from the implicit function values, and not the input scalar
|
|
* data.
|
|
*/
|
|
vtkSetMacro(GenerateCutScalars, vtkTypeBool);
|
|
vtkGetMacro(GenerateCutScalars, vtkTypeBool);
|
|
vtkBooleanMacro(GenerateCutScalars, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* If this is enabled (by default), the output will be triangles
|
|
* otherwise, the output will be the intersection polygons
|
|
* WARNING: if the cutting function is not a plane, the output
|
|
* will be 3D poygons, which might be nice to look at but hard
|
|
* to compute with downstream.
|
|
*/
|
|
vtkSetMacro(GenerateTriangles, vtkTypeBool);
|
|
vtkGetMacro(GenerateTriangles, vtkTypeBool);
|
|
vtkBooleanMacro(GenerateTriangles, vtkTypeBool);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Specify a spatial locator for merging points. By default,
|
|
* an instance of vtkMergePoints is used.
|
|
*/
|
|
void SetLocator(vtkIncrementalPointLocator* locator);
|
|
vtkGetObjectMacro(Locator, vtkIncrementalPointLocator);
|
|
//@}
|
|
|
|
//@{
|
|
/**
|
|
* Set the sorting order for the generated polydata. There are two
|
|
* possibilities:
|
|
* Sort by value = 0 - This is the most efficient sort. For each cell,
|
|
* all contour values are processed. This is the default.
|
|
* Sort by cell = 1 - For each contour value, all cells are processed.
|
|
* This order should be used if the extracted polygons must be rendered
|
|
* in a back-to-front or front-to-back order. This is very problem
|
|
* dependent.
|
|
* For most applications, the default order is fine (and faster).
|
|
|
|
* Sort by cell is going to have a problem if the input has 2D and 3D cells.
|
|
* Cell data will be scrambled because with
|
|
* vtkPolyData output, verts and lines have lower cell ids than triangles.
|
|
*/
|
|
vtkSetClampMacro(SortBy, int, VTK_SORT_BY_VALUE, VTK_SORT_BY_CELL);
|
|
vtkGetMacro(SortBy, int);
|
|
void SetSortByToSortByValue() { this->SetSortBy(VTK_SORT_BY_VALUE); }
|
|
void SetSortByToSortByCell() { this->SetSortBy(VTK_SORT_BY_CELL); }
|
|
const char* GetSortByAsString();
|
|
//@}
|
|
|
|
/**
|
|
* Create default locator. Used to create one when none is specified. The
|
|
* locator is used to merge coincident points.
|
|
*/
|
|
void CreateDefaultLocator();
|
|
|
|
/**
|
|
* Normally I would put this in a different class, but since
|
|
* This is a temporary fix until we convert this class and contour filter
|
|
* to generate unstructured grid output instead of poly data, I am leaving it here.
|
|
*/
|
|
static void GetCellTypeDimensions(unsigned char* cellTypeDimensions);
|
|
|
|
//@{
|
|
/**
|
|
* Set/get the desired precision for the output types. See the documentation
|
|
* for the vtkAlgorithm::DesiredOutputPrecision enum for an explanation of
|
|
* the available precision settings.
|
|
*/
|
|
vtkSetClampMacro(OutputPointsPrecision, int, SINGLE_PRECISION, DEFAULT_PRECISION);
|
|
vtkGetMacro(OutputPointsPrecision, int);
|
|
//@}
|
|
|
|
protected:
|
|
vtkCutter(vtkImplicitFunction* cf = nullptr);
|
|
~vtkCutter() override;
|
|
|
|
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
|
|
int FillInputPortInformation(int port, vtkInformation* info) override;
|
|
void UnstructuredGridCutter(vtkDataSet* input, vtkPolyData* output);
|
|
void DataSetCutter(vtkDataSet* input, vtkPolyData* output);
|
|
void StructuredPointsCutter(
|
|
vtkDataSet*, vtkPolyData*, vtkInformation*, vtkInformationVector**, vtkInformationVector*);
|
|
void StructuredGridCutter(vtkDataSet*, vtkPolyData*);
|
|
void RectilinearGridCutter(vtkDataSet*, vtkPolyData*);
|
|
vtkImplicitFunction* CutFunction;
|
|
vtkTypeBool GenerateTriangles;
|
|
|
|
vtkSynchronizedTemplates3D* SynchronizedTemplates3D;
|
|
vtkSynchronizedTemplatesCutter3D* SynchronizedTemplatesCutter3D;
|
|
vtkGridSynchronizedTemplates3D* GridSynchronizedTemplates;
|
|
vtkRectilinearSynchronizedTemplates* RectilinearSynchronizedTemplates;
|
|
|
|
vtkIncrementalPointLocator* Locator;
|
|
int SortBy;
|
|
vtkContourValues* ContourValues;
|
|
vtkTypeBool GenerateCutScalars;
|
|
int OutputPointsPrecision;
|
|
|
|
private:
|
|
vtkCutter(const vtkCutter&) = delete;
|
|
void operator=(const vtkCutter&) = delete;
|
|
};
|
|
|
|
//@{
|
|
/**
|
|
* Return the sorting procedure as a descriptive character string.
|
|
*/
|
|
inline const char* vtkCutter::GetSortByAsString(void)
|
|
{
|
|
if (this->SortBy == VTK_SORT_BY_VALUE)
|
|
{
|
|
return "SortByValue";
|
|
}
|
|
else
|
|
{
|
|
return "SortByCell";
|
|
}
|
|
}
|
|
//@}
|
|
|
|
#endif
|