You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
5.2 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkCurvatures.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkCurvatures
* @brief compute curvatures (Gauss and mean) of a Polydata object
*
* vtkCurvatures takes a polydata input and computes the curvature of the
* mesh at each point. Four possible methods of computation are available :
*
* Gauss Curvature
* discrete Gauss curvature (K) computation,
* \f$K(\text{vertex v}) = 2*\pi - \sum_{\text{facet neighbs f of v}} (\text{angle_f at v})\f$.
* The contribution of every facet is for the moment weighted by \f$Area(facet)/3\f$.
* The units of Gaussian Curvature are \f$[1/m^2]\f$.
*
* Mean Curvature
* \f$H(vertex v) = \text{average over edges neighbs e of H(e)}\f$,
* \f$H(edge e) = length(e) * dihedral\_angle(e)\f$.
*
* NB: dihedral_angle is the ORIENTED angle between -PI and PI,
* this means that the surface is assumed to be orientable
* the computation creates the orientation.
* The units of Mean Curvature are [1/m].
*
* Maximum (\f$k_\max\f$) and Minimum (\f$k_\min\f$) Principal Curvatures
* \f$k_\max = H + \sqrt{H^2 - K}\f$,
* \f$k_\min = H - \sqrt{H^2 - K}\f$
* Excepting spherical and planar surfaces which have equal principal
* curvatures, the curvature at a point on a surface varies with the direction
* one "sets off" from the point. For all directions, the curvature will pass
* through two extrema: a minimum (\f$k_\min\f$) and a maximum (\f$k_\max\f$)
* which occur at mutually orthogonal directions to each other.
*
* NB. The sign of the Gauss curvature is a geometric invariant, it should be
* positive when the surface looks like a sphere, negative when it looks like a
* saddle, however the sign of the Mean curvature is not, it depends on the
* convention for normals. This code assumes that normals point outwards (i.e.
* from the surface of a sphere outwards). If a given mesh produces curvatures
* of opposite senses then the flag InvertMeanCurvature can be set and the
* Curvature reported by the Mean calculation will be inverted.
*
* @par Thanks:
* Philip Batchelor philipp.batchelor@kcl.ac.uk for creating and contributing
* the class and Andrew Maclean a.maclean@acfr.usyd.edu.au for cleanups and
* fixes. Thanks also to Goodwin Lawlor for contributing patch to calculate
* principal curvatures
*
*
*
*/
#ifndef vtkCurvatures_h
#define vtkCurvatures_h
#include "vtkFiltersGeneralModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#define VTK_CURVATURE_GAUSS 0
#define VTK_CURVATURE_MEAN 1
#define VTK_CURVATURE_MAXIMUM 2
#define VTK_CURVATURE_MINIMUM 3
class VTKFILTERSGENERAL_EXPORT vtkCurvatures : public vtkPolyDataAlgorithm
{
public:
vtkTypeMacro(vtkCurvatures, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Construct with curvature type set to Gauss
*/
static vtkCurvatures* New();
//@{
/**
* Set/Get Curvature type
* VTK_CURVATURE_GAUSS: Gaussian curvature, stored as
* DataArray "Gauss_Curvature"
* VTK_CURVATURE_MEAN : Mean curvature, stored as
* DataArray "Mean_Curvature"
*/
vtkSetMacro(CurvatureType, int);
vtkGetMacro(CurvatureType, int);
void SetCurvatureTypeToGaussian() { this->SetCurvatureType(VTK_CURVATURE_GAUSS); }
void SetCurvatureTypeToMean() { this->SetCurvatureType(VTK_CURVATURE_MEAN); }
void SetCurvatureTypeToMaximum() { this->SetCurvatureType(VTK_CURVATURE_MAXIMUM); }
void SetCurvatureTypeToMinimum() { this->SetCurvatureType(VTK_CURVATURE_MINIMUM); }
//@}
//@{
/**
* Set/Get the flag which inverts the mean curvature calculation for
* meshes with inward pointing normals (default false)
*/
vtkSetMacro(InvertMeanCurvature, vtkTypeBool);
vtkGetMacro(InvertMeanCurvature, vtkTypeBool);
vtkBooleanMacro(InvertMeanCurvature, vtkTypeBool);
//@}
protected:
vtkCurvatures();
// Usual data generation method
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
/**
* discrete Gauss curvature (K) computation,
* cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
*/
void GetGaussCurvature(vtkPolyData* output);
// discrete Mean curvature (H) computation,
// cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
void GetMeanCurvature(vtkPolyData* output);
/**
* Maximum principal curvature \f$k_max = H + sqrt(H^2 -K)\f$
*/
void GetMaximumCurvature(vtkPolyData* input, vtkPolyData* output);
/**
* Minimum principal curvature \f$k_min = H - sqrt(H^2 -K)\f$
*/
void GetMinimumCurvature(vtkPolyData* input, vtkPolyData* output);
// Vars
int CurvatureType;
vtkTypeBool InvertMeanCurvature;
private:
vtkCurvatures(const vtkCurvatures&) = delete;
void operator=(const vtkCurvatures&) = delete;
};
#endif