You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2908 lines
93 KiB
C

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://www.hdfgroup.org/licenses. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* This file contains public declarations for the H5T module.
*/
#ifndef H5Tpublic_H
#define H5Tpublic_H
/* Public headers needed by this file */
#include "H5public.h"
#include "H5Ipublic.h"
#define HOFFSET(S, M) (offsetof(S, M))
/**
* These are the various classes of datatypes
* internal If this goes over 16 types (0-15), the file format will need to
* change.
*/
//! <!-- [H5T_class_t_snip] -->
typedef enum H5T_class_t {
H5T_NO_CLASS = -1, /**< error */
H5T_INTEGER = 0, /**< integer types */
H5T_FLOAT = 1, /**< floating-point types */
H5T_TIME = 2, /**< date and time types */
H5T_STRING = 3, /**< character string types */
H5T_BITFIELD = 4, /**< bit field types */
H5T_OPAQUE = 5, /**< opaque types */
H5T_COMPOUND = 6, /**< compound types */
H5T_REFERENCE = 7, /**< reference types */
H5T_ENUM = 8, /**< enumeration types */
H5T_VLEN = 9, /**< variable-Length types */
H5T_ARRAY = 10, /**< array types */
H5T_NCLASSES /**< sentinel: this must be last */
} H5T_class_t;
//! <!-- [H5T_class_t_snip] -->
/**
* Byte orders
*/
//! <!-- [H5T_order_t_snip] -->
typedef enum H5T_order_t {
H5T_ORDER_ERROR = -1, /**< error */
H5T_ORDER_LE = 0, /**< little endian */
H5T_ORDER_BE = 1, /**< bit endian */
H5T_ORDER_VAX = 2, /**< VAX mixed endian */
H5T_ORDER_MIXED = 3, /**< Compound type with mixed member orders */
H5T_ORDER_NONE = 4 /**< no particular order (strings, bits,..) */
/*H5T_ORDER_NONE must be last */
} H5T_order_t;
//! <!-- [H5T_order_t_snip] -->
/**
* Types of integer sign schemes
*/
//! <!-- [H5T_sign_t_snip] -->
typedef enum H5T_sign_t {
H5T_SGN_ERROR = -1, /**< error */
H5T_SGN_NONE = 0, /**< this is an unsigned type */
H5T_SGN_2 = 1, /**< two's complement */
H5T_NSGN = 2 /** sentinel: this must be last! */
} H5T_sign_t;
//! <!-- [H5T_sign_t_snip] -->
/**
* Floating-point normalization schemes
*/
//! <!-- [H5T_norm_t_snip] -->
typedef enum H5T_norm_t {
H5T_NORM_ERROR = -1, /**< error */
H5T_NORM_IMPLIED = 0, /**< msb of mantissa isn't stored, always 1 */
H5T_NORM_MSBSET = 1, /**< msb of mantissa is always 1 */
H5T_NORM_NONE = 2 /**< not normalized */
/*H5T_NORM_NONE must be last */
} H5T_norm_t;
//! <!-- [H5T_norm_t_snip] -->
/**
* Character set to use for text strings.
* \internal Do not change these values since they appear in HDF5 files!
*/
typedef enum H5T_cset_t {
H5T_CSET_ERROR = -1, /**< error */
H5T_CSET_ASCII = 0, /**< US ASCII */
H5T_CSET_UTF8 = 1, /**< UTF-8 Unicode encoding */
H5T_CSET_RESERVED_2 = 2, /**< reserved for later use */
H5T_CSET_RESERVED_3 = 3, /**< reserved for later use */
H5T_CSET_RESERVED_4 = 4, /**< reserved for later use */
H5T_CSET_RESERVED_5 = 5, /**< reserved for later use */
H5T_CSET_RESERVED_6 = 6, /**< reserved for later use */
H5T_CSET_RESERVED_7 = 7, /**< reserved for later use */
H5T_CSET_RESERVED_8 = 8, /**< reserved for later use */
H5T_CSET_RESERVED_9 = 9, /**< reserved for later use */
H5T_CSET_RESERVED_10 = 10, /**< reserved for later use */
H5T_CSET_RESERVED_11 = 11, /**< reserved for later use */
H5T_CSET_RESERVED_12 = 12, /**< reserved for later use */
H5T_CSET_RESERVED_13 = 13, /**< reserved for later use */
H5T_CSET_RESERVED_14 = 14, /**< reserved for later use */
H5T_CSET_RESERVED_15 = 15 /**< reserved for later use */
} H5T_cset_t;
#define H5T_NCSET H5T_CSET_RESERVED_2 /*Number of character sets actually defined */
/**
* Type of padding to use in character strings.
* \internal Do not change these values since they appear in HDF5 files!
*/
typedef enum H5T_str_t {
H5T_STR_ERROR = -1, /**< error */
H5T_STR_NULLTERM = 0, /**< null terminate like in C */
H5T_STR_NULLPAD = 1, /**< pad with nulls */
H5T_STR_SPACEPAD = 2, /**< pad with spaces like in Fortran */
H5T_STR_RESERVED_3 = 3, /**< reserved for later use */
H5T_STR_RESERVED_4 = 4, /**< reserved for later use */
H5T_STR_RESERVED_5 = 5, /**< reserved for later use */
H5T_STR_RESERVED_6 = 6, /**< reserved for later use */
H5T_STR_RESERVED_7 = 7, /**< reserved for later use */
H5T_STR_RESERVED_8 = 8, /**< reserved for later use */
H5T_STR_RESERVED_9 = 9, /**< reserved for later use */
H5T_STR_RESERVED_10 = 10, /**< reserved for later use */
H5T_STR_RESERVED_11 = 11, /**< reserved for later use */
H5T_STR_RESERVED_12 = 12, /**< reserved for later use */
H5T_STR_RESERVED_13 = 13, /**< reserved for later use */
H5T_STR_RESERVED_14 = 14, /**< reserved for later use */
H5T_STR_RESERVED_15 = 15 /**< reserved for later use */
} H5T_str_t;
#define H5T_NSTR H5T_STR_RESERVED_3 /*num H5T_str_t types actually defined */
/**
* Type of padding to use in other atomic types
*/
//! <!-- [H5T_pad_t_snip] -->
typedef enum H5T_pad_t {
H5T_PAD_ERROR = -1, /**< error */
H5T_PAD_ZERO = 0, /**< always set to zero */
H5T_PAD_ONE = 1, /**< always set to one */
H5T_PAD_BACKGROUND = 2, /**< set to background value */
H5T_NPAD = 3 /**< sentinel: THIS MUST BE LAST */
} H5T_pad_t;
//! <!-- [H5T_pad_t_snip] -->
/**
* The order to retrieve atomic native datatype
*/
//! <!-- [H5T_direction_t_snip] -->
typedef enum H5T_direction_t {
H5T_DIR_DEFAULT = 0, /**< default direction is ascending */
H5T_DIR_ASCEND = 1, /**< in ascending order */
H5T_DIR_DESCEND = 2 /**< in descending order */
} H5T_direction_t;
//! <!-- [H5T_direction_t_snip] -->
/**
* The exception type passed into the conversion callback function
*/
typedef enum H5T_conv_except_t {
H5T_CONV_EXCEPT_RANGE_HI = 0,
/**< Source value is greater than destination's range */
H5T_CONV_EXCEPT_RANGE_LOW = 1,
/**< Source value is less than destination's range */
H5T_CONV_EXCEPT_PRECISION = 2,
/**< Source value loses precision in destination */
H5T_CONV_EXCEPT_TRUNCATE = 3,
/**< Source value is truncated in destination */
H5T_CONV_EXCEPT_PINF = 4,
/**< Source value is positive infinity */
H5T_CONV_EXCEPT_NINF = 5,
/**< Source value is negative infinity */
H5T_CONV_EXCEPT_NAN = 6
/**< Source value is \c NaN (not a number, including \c QNaN and \c SNaN) */
} H5T_conv_except_t;
/**
* The return value from conversion callback function H5T_conv_except_func_t()
*/
typedef enum H5T_conv_ret_t {
H5T_CONV_ABORT = -1, /**< abort conversion */
H5T_CONV_UNHANDLED = 0, /**< callback function failed to handle the exception */
H5T_CONV_HANDLED = 1 /**< callback function handled the exception successfully */
} H5T_conv_ret_t;
/**
* Variable Length Datatype struct in memory (This is only used for VL
* sequences, not VL strings, which are stored in char *'s)
*/
typedef struct {
size_t len; /**< Length of VL data (in base type units) */
void *p; /**< Pointer to VL data */
} hvl_t;
/* Variable Length String information */
/**
* Indicate that a string is variable length (null-terminated in C, instead of
* fixed length)
*/
#define H5T_VARIABLE SIZE_MAX
/* Opaque information */
/**
* Maximum length of an opaque tag
* \internal This could be raised without too much difficulty
*/
#define H5T_OPAQUE_TAG_MAX 256
#ifdef __cplusplus
extern "C" {
#endif
//! <!-- [H5T_conv_except_func_t_snip] -->
/**
* \brief Exception handler.
*
* \param[in] except_type The kind of exception that occurred
* \param[in] src_id Source datatype identifier
* \param[in] dst_id Destination datatype identifier
* \param[in] src_buf Source data buffer
* \param[in,out] dst_buf Destination data buffer
* \param[in,out] user_data Callback context
* \returns Valid callback function return values are #H5T_CONV_ABORT,
* #H5T_CONV_UNHANDLED and #H5T_CONV_HANDLED.
*
* \details If an exception like overflow happens during conversion, this
* function is called if it's registered through H5Pset_type_conv_cb().
*
*/
typedef H5T_conv_ret_t (*H5T_conv_except_func_t)(H5T_conv_except_t except_type, hid_t src_id, hid_t dst_id,
void *src_buf, void *dst_buf, void *user_data);
//! <!-- [H5T_conv_except_func_t_snip] -->
/* When this header is included from a private header, don't make calls to H5open() */
#undef H5OPEN
#ifndef H5private_H
#define H5OPEN H5open(),
#else /* H5private_H */
#define H5OPEN
#endif /* H5private_H */
/*
* The IEEE floating point types in various byte orders.
*/
/**
* \ingroup PDTIEEE
* 32-bit big-endian IEEE floating-point numbers
*/
#define H5T_IEEE_F32BE (H5OPEN H5T_IEEE_F32BE_g)
/**
* \ingroup PDTIEEE
* 32-bit little-endian IEEE floating-point numbers
*/
#define H5T_IEEE_F32LE (H5OPEN H5T_IEEE_F32LE_g)
/**
* \ingroup PDTIEEE
* 64-bit big-endian IEEE floating-point numbers
*/
#define H5T_IEEE_F64BE (H5OPEN H5T_IEEE_F64BE_g)
/**
* \ingroup PDTIEEE
* 64-bit little-endian IEEE floating-point numbers
*/
#define H5T_IEEE_F64LE (H5OPEN H5T_IEEE_F64LE_g)
H5_DLLVAR hid_t H5T_IEEE_F32BE_g;
H5_DLLVAR hid_t H5T_IEEE_F32LE_g;
H5_DLLVAR hid_t H5T_IEEE_F64BE_g;
H5_DLLVAR hid_t H5T_IEEE_F64LE_g;
/*
* These are "standard" types. For instance, signed (2's complement) and
* unsigned integers of various sizes and byte orders.
*/
/**
* \ingroup PDTSTD
* 8-bit big-endian signed integers
*/
#define H5T_STD_I8BE (H5OPEN H5T_STD_I8BE_g)
/**
* \ingroup PDTSTD
* 8-bit little-endian signed integers
*/
#define H5T_STD_I8LE (H5OPEN H5T_STD_I8LE_g)
/**
* \ingroup PDTSTD
* 16-bit big-endian signed integers
*/
#define H5T_STD_I16BE (H5OPEN H5T_STD_I16BE_g)
/**
* \ingroup PDTSTD
* 16-bit little-endian signed integers
*/
#define H5T_STD_I16LE (H5OPEN H5T_STD_I16LE_g)
/**
* \ingroup PDTSTD
* 32-bit big-endian signed integers
*/
#define H5T_STD_I32BE (H5OPEN H5T_STD_I32BE_g)
/**
* \ingroup PDTSTD
* 32-bit little-endian signed integers
*/
#define H5T_STD_I32LE (H5OPEN H5T_STD_I32LE_g)
/**
* \ingroup PDTSTD
* 64-bit big-endian signed integers
*/
#define H5T_STD_I64BE (H5OPEN H5T_STD_I64BE_g)
/**
* \ingroup PDTSTD
* 64-bit little-endian signed integers
*/
#define H5T_STD_I64LE (H5OPEN H5T_STD_I64LE_g)
/**
* \ingroup PDTSTD
* 8-bit big-endian unsigned integers
*/
#define H5T_STD_U8BE (H5OPEN H5T_STD_U8BE_g)
/**
* \ingroup PDTSTD
* 8-bit little-endian unsigned integers
*/
#define H5T_STD_U8LE (H5OPEN H5T_STD_U8LE_g)
/**
* \ingroup PDTSTD
* 16-bit big-endian unsigned integers
*/
#define H5T_STD_U16BE (H5OPEN H5T_STD_U16BE_g)
/**
* \ingroup PDTSTD
* 16-bit little-endian unsigned integers
*/
#define H5T_STD_U16LE (H5OPEN H5T_STD_U16LE_g)
/**
* \ingroup PDTSTD
* 32-bit big-endian unsigned integers
*/
#define H5T_STD_U32BE (H5OPEN H5T_STD_U32BE_g)
/**
* \ingroup PDTSTD
* 32-bit little-endian unsigned integers
*/
#define H5T_STD_U32LE (H5OPEN H5T_STD_U32LE_g)
/**
* \ingroup PDTSTD
* 64-bit big-endian unsigned integers
*/
#define H5T_STD_U64BE (H5OPEN H5T_STD_U64BE_g)
/**
* \ingroup PDTSTD
* 64-bit little-endian unsigned integers
*/
#define H5T_STD_U64LE (H5OPEN H5T_STD_U64LE_g)
/**
* \ingroup PDTSTD
* 8-bit big-endian bitfield
*/
#define H5T_STD_B8BE (H5OPEN H5T_STD_B8BE_g)
/**
* \ingroup PDTSTD
* 8-bit little-endian bitfield
*/
#define H5T_STD_B8LE (H5OPEN H5T_STD_B8LE_g)
/**
* \ingroup PDTSTD
* 16-bit big-endian bitfield
*/
#define H5T_STD_B16BE (H5OPEN H5T_STD_B16BE_g)
/**
* \ingroup PDTSTD
* 16-bit little-endian bitfield
*/
#define H5T_STD_B16LE (H5OPEN H5T_STD_B16LE_g)
/**
* \ingroup PDTSTD
* 32-bit big-endian bitfield
*/
#define H5T_STD_B32BE (H5OPEN H5T_STD_B32BE_g)
/**
* \ingroup PDTSTD
* 32-bit little-endian bitfield
*/
#define H5T_STD_B32LE (H5OPEN H5T_STD_B32LE_g)
/**
* \ingroup PDTSTD
* 64-bit big-endian bitfield
*/
#define H5T_STD_B64BE (H5OPEN H5T_STD_B64BE_g)
/**
* \ingroup PDTSTD
* 64-bit little-endian bitfield
*/
#define H5T_STD_B64LE (H5OPEN H5T_STD_B64LE_g)
/**
* \ingroup PDTSTD
* Object reference
*/
#define H5T_STD_REF_OBJ (H5OPEN H5T_STD_REF_OBJ_g)
/**
* \ingroup PDTSTD
* Dataset region reference
*/
#define H5T_STD_REF_DSETREG (H5OPEN H5T_STD_REF_DSETREG_g)
/**
* \ingroup PDTSTD
* Generic reference
*/
#define H5T_STD_REF (H5OPEN H5T_STD_REF_g)
H5_DLLVAR hid_t H5T_STD_I8BE_g;
H5_DLLVAR hid_t H5T_STD_I8LE_g;
H5_DLLVAR hid_t H5T_STD_I16BE_g;
H5_DLLVAR hid_t H5T_STD_I16LE_g;
H5_DLLVAR hid_t H5T_STD_I32BE_g;
H5_DLLVAR hid_t H5T_STD_I32LE_g;
H5_DLLVAR hid_t H5T_STD_I64BE_g;
H5_DLLVAR hid_t H5T_STD_I64LE_g;
H5_DLLVAR hid_t H5T_STD_U8BE_g;
H5_DLLVAR hid_t H5T_STD_U8LE_g;
H5_DLLVAR hid_t H5T_STD_U16BE_g;
H5_DLLVAR hid_t H5T_STD_U16LE_g;
H5_DLLVAR hid_t H5T_STD_U32BE_g;
H5_DLLVAR hid_t H5T_STD_U32LE_g;
H5_DLLVAR hid_t H5T_STD_U64BE_g;
H5_DLLVAR hid_t H5T_STD_U64LE_g;
H5_DLLVAR hid_t H5T_STD_B8BE_g;
H5_DLLVAR hid_t H5T_STD_B8LE_g;
H5_DLLVAR hid_t H5T_STD_B16BE_g;
H5_DLLVAR hid_t H5T_STD_B16LE_g;
H5_DLLVAR hid_t H5T_STD_B32BE_g;
H5_DLLVAR hid_t H5T_STD_B32LE_g;
H5_DLLVAR hid_t H5T_STD_B64BE_g;
H5_DLLVAR hid_t H5T_STD_B64LE_g;
H5_DLLVAR hid_t H5T_STD_REF_OBJ_g;
H5_DLLVAR hid_t H5T_STD_REF_DSETREG_g;
H5_DLLVAR hid_t H5T_STD_REF_g;
/*
* Types which are particular to Unix.
*/
/**
* \ingroup PDTUNIX
*/
#define H5T_UNIX_D32BE (H5OPEN H5T_UNIX_D32BE_g)
/**
* \ingroup PDTUNIX
*/
#define H5T_UNIX_D32LE (H5OPEN H5T_UNIX_D32LE_g)
/**
* \ingroup PDTUNIX
*/
#define H5T_UNIX_D64BE (H5OPEN H5T_UNIX_D64BE_g)
/**
* \ingroup PDTUNIX
*/
#define H5T_UNIX_D64LE (H5OPEN H5T_UNIX_D64LE_g)
H5_DLLVAR hid_t H5T_UNIX_D32BE_g;
H5_DLLVAR hid_t H5T_UNIX_D32LE_g;
H5_DLLVAR hid_t H5T_UNIX_D64BE_g;
H5_DLLVAR hid_t H5T_UNIX_D64LE_g;
/*
* Types particular to the C language. String types use `bytes' instead
* of `bits' as their size.
*/
/**
* \ingroup PDTS
* String datatype in C (size defined in bytes rather than in bits)
*/
#define H5T_C_S1 (H5OPEN H5T_C_S1_g)
H5_DLLVAR hid_t H5T_C_S1_g;
/*
* Types particular to Fortran.
*/
/**
* \ingroup PDTS
* String datatype in Fortran (as defined for the HDF5 C library)
*/
#define H5T_FORTRAN_S1 (H5OPEN H5T_FORTRAN_S1_g)
H5_DLLVAR hid_t H5T_FORTRAN_S1_g;
/*
* These types are for Intel CPU's. They are little endian with IEEE
* floating point.
*/
/**
* \ingroup PDTX86
* 8-bit little-endian signed (2's complement) integers for Intel CPUs
*/
#define H5T_INTEL_I8 H5T_STD_I8LE
/**
* \ingroup PDTX86
* 16-bit little-endian signed (2's complement) integers for Intel CPUs
*/
#define H5T_INTEL_I16 H5T_STD_I16LE
/**
* \ingroup PDTX86
* 32-bit little-endian signed (2's complement) integers for Intel CPUs
*/
#define H5T_INTEL_I32 H5T_STD_I32LE
/**
* \ingroup PDTX86
* 64-bit little-endian signed (2's complement) integers for Intel CPUs
*/
#define H5T_INTEL_I64 H5T_STD_I64LE
/**
* \ingroup PDTX86
* 8-bit little-endian unsigned integers for Intel CPUs
*/
#define H5T_INTEL_U8 H5T_STD_U8LE
/**
* \ingroup PDTX86
* 16-bit little-endian unsigned integers for Intel CPUs
*/
#define H5T_INTEL_U16 H5T_STD_U16LE
/**
* \ingroup PDTX86
* 32-bit little-endian unsigned integers for Intel CPUs
*/
#define H5T_INTEL_U32 H5T_STD_U32LE
/**
* \ingroup PDTX86
* 64-bit little-endian unsigned integers for Intel CPUs
*/
#define H5T_INTEL_U64 H5T_STD_U64LE
/**
* \ingroup PDTX86
* 8-bit little-endian bitfield for Intel CPUs
*/
#define H5T_INTEL_B8 H5T_STD_B8LE
/**
* \ingroup PDTX86
* 16-bit little-endian bitfield for Intel CPUs
*/
#define H5T_INTEL_B16 H5T_STD_B16LE
/**
* \ingroup PDTX86
* 32-bit little-endian bitfield for Intel CPUs
*/
#define H5T_INTEL_B32 H5T_STD_B32LE
/**
* \ingroup PDTX86
* 64-bit little-endian bitfield for Intel CPUs
*/
#define H5T_INTEL_B64 H5T_STD_B64LE
/**
* \ingroup PDTX86
* 32-bit little-endian IEEE floating-point numbers for Intel CPUs
*/
#define H5T_INTEL_F32 H5T_IEEE_F32LE
/**
* \ingroup PDTX86
* 64-bit little-endian IEEE floating-point numbers for Intel CPUs
*/
#define H5T_INTEL_F64 H5T_IEEE_F64LE
/*
* These types are for DEC Alpha CPU's. They are little endian with IEEE
* floating point.
*/
/**
* \ingroup PDTALPHA
* 8-bit little-endian signed (2's complement) integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_I8 H5T_STD_I8LE
/**
* \ingroup PDTALPHA
* 16-bit little-endian signed (2's complement) integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_I16 H5T_STD_I16LE
/**
* \ingroup PDTALPHA
* 32-bit little-endian signed (2's complement) integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_I32 H5T_STD_I32LE
/**
* \ingroup PDTALPHA
* 64-bit little-endian signed (2's complement) integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_I64 H5T_STD_I64LE
/**
* \ingroup PDTALPHA
* 8-bit little-endian unsigned integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_U8 H5T_STD_U8LE
/**
* \ingroup PDTALPHA
* 16-bit little-endian unsigned integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_U16 H5T_STD_U16LE
/**
* \ingroup PDTALPHA
* 32-bit little-endian unsigned integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_U32 H5T_STD_U32LE
/**
* \ingroup PDTALPHA
* 64-bit little-endian unsigned integers for DEC Alpha CPUs
*/
#define H5T_ALPHA_U64 H5T_STD_U64LE
/**
* \ingroup PDTALPHA
* 8-bit little-endian bitfield for DEC Alpha CPUs
*/
#define H5T_ALPHA_B8 H5T_STD_B8LE
/**
* \ingroup PDTALPHA
* 16-bit little-endian bitfield for DEC Alpha CPUs
*/
#define H5T_ALPHA_B16 H5T_STD_B16LE
/**
* \ingroup PDTALPHA
* 32-bit little-endian bitfield for DEC Alpha CPUs
*/
#define H5T_ALPHA_B32 H5T_STD_B32LE
/**
* \ingroup PDTALPHA
* 64-bit little-endian bitfield for DEC Alpha CPUs
*/
#define H5T_ALPHA_B64 H5T_STD_B64LE
/**
* \ingroup PDTALPHA
* 32-bit little-endian IEEE floating-point numbers for DEC Alpha CPUs
*/
#define H5T_ALPHA_F32 H5T_IEEE_F32LE
/**
* \ingroup PDTALPHA
* 64-bit little-endian IEEE floating-point numbers for DEC Alpha CPUs
*/
#define H5T_ALPHA_F64 H5T_IEEE_F64LE
/*
* These types are for MIPS cpu's commonly used in SGI systems. They are big
* endian with IEEE floating point.
*/
/**
* \ingroup PDTMIPS
* 8-bit big-endian signed (2's complement) integers for SGI MIPS CPUs
*/
#define H5T_MIPS_I8 H5T_STD_I8BE
/**
* \ingroup PDTMIPS
* 16-bit big-endian signed (2's complement) integers for SGI MIPS CPUs
*/
#define H5T_MIPS_I16 H5T_STD_I16BE
/**
* \ingroup PDTMIPS
* 32-bit big-endian signed (2's complement) integers for SGI MIPS CPUs
*/
#define H5T_MIPS_I32 H5T_STD_I32BE
/**
* \ingroup PDTMIPS
* 64-bit big-endian signed (2's complement) integers for SGI MIPS CPUs
*/
#define H5T_MIPS_I64 H5T_STD_I64BE
/**
* \ingroup PDTMIPS
* 8-bit big-endian unsigned integers for SGI MIPS CPUs
*/
#define H5T_MIPS_U8 H5T_STD_U8BE
/**
* \ingroup PDTMIPS
* 16-bit big-endian unsigned integers for SGI MIPS CPUs
*/
#define H5T_MIPS_U16 H5T_STD_U16BE
/**
* \ingroup PDTMIPS
* 32-bit big-endian unsigned integers for SGI MIPS CPUs
*/
#define H5T_MIPS_U32 H5T_STD_U32BE
/**
* \ingroup PDTMIPS
* 64-bit big-endian unsigned integers for SGI MIPS CPUs
*/
#define H5T_MIPS_U64 H5T_STD_U64BE
/**
* \ingroup PDTMIPS
* 8-bit big-endian bitfield for SGI MIPS CPUs
*/
#define H5T_MIPS_B8 H5T_STD_B8BE
/**
* \ingroup PDTMIPS
* 16-bit big-endian bitfield for SGI MIPS CPUs
*/
#define H5T_MIPS_B16 H5T_STD_B16BE
/**
* \ingroup PDTMIPS
* 32-bit big-endian bitfield for SGI MIPS CPUs
*/
#define H5T_MIPS_B32 H5T_STD_B32BE
/**
* \ingroup PDTMIPS
* 64-bit big-endian bitfield for SGI MIPS CPUs
*/
#define H5T_MIPS_B64 H5T_STD_B64BE
/**
* \ingroup PDTMIPS
* 32-bit big-endian IEEE floating-point numbers for MIPS CPUs
*/
#define H5T_MIPS_F32 H5T_IEEE_F32BE
/**
* \ingroup PDTMIPS
* 64-bit big-endian IEEE floating-point numbers for MIPS CPUs
*/
#define H5T_MIPS_F64 H5T_IEEE_F64BE
/*
* The VAX floating point types (i.e. in VAX byte order)
*/
/**
* \ingroup PDTALPHA
* 32-bit VAX byte order floating-point numbers for OpenVMS on DEC Alpha CPUs
*/
#define H5T_VAX_F32 (H5OPEN H5T_VAX_F32_g)
/**
* \ingroup PDTALPHA
* 64-bit VAX byte order floating-point numbers for OpenVMS on DEC Alpha CPUs
*/
#define H5T_VAX_F64 (H5OPEN H5T_VAX_F64_g)
H5_DLLVAR hid_t H5T_VAX_F32_g;
H5_DLLVAR hid_t H5T_VAX_F64_g;
/*
* The predefined native types. These are the types detected by H5detect and
* they violate the naming scheme a little. Instead of a class name,
* precision and byte order as the last component, they have a C-like type
* name. If the type begins with `U' then it is the unsigned version of the
* integer type; other integer types are signed. The type LLONG corresponds
* to C's `long long' and LDOUBLE is `long double' (these types might be the
* same as `LONG' and `DOUBLE' respectively).
*/
/**
* \ingroup PDTNAT
* C-style \c char
*/
#define H5T_NATIVE_CHAR (CHAR_MIN ? H5T_NATIVE_SCHAR : H5T_NATIVE_UCHAR)
/**
* \ingroup PDTNAT
* C-style \Code{signed char}
*/
#define H5T_NATIVE_SCHAR (H5OPEN H5T_NATIVE_SCHAR_g)
/**
* \ingroup PDTNAT
* C-style \Code{unsigned char}
*/
#define H5T_NATIVE_UCHAR (H5OPEN H5T_NATIVE_UCHAR_g)
/**
* \ingroup PDTNAT
* C-style \Code{short}
*/
#define H5T_NATIVE_SHORT (H5OPEN H5T_NATIVE_SHORT_g)
/**
* \ingroup PDTNAT
* C-style \Code{unsigned short}
*/
#define H5T_NATIVE_USHORT (H5OPEN H5T_NATIVE_USHORT_g)
/**
* \ingroup PDTNAT
* C-style \Code{int}
*/
#define H5T_NATIVE_INT (H5OPEN H5T_NATIVE_INT_g)
/**
* \ingroup PDTNAT
* C-style \Code{unsigned int}
*/
#define H5T_NATIVE_UINT (H5OPEN H5T_NATIVE_UINT_g)
/**
* \ingroup PDTNAT
* C-style \Code{long}
*/
#define H5T_NATIVE_LONG (H5OPEN H5T_NATIVE_LONG_g)
/**
* \ingroup PDTNAT
* C-style \Code{unsigned long}
*/
#define H5T_NATIVE_ULONG (H5OPEN H5T_NATIVE_ULONG_g)
/**
* \ingroup PDTNAT
* C-style \Code{long long}
*/
#define H5T_NATIVE_LLONG (H5OPEN H5T_NATIVE_LLONG_g)
/**
* \ingroup PDTNAT
* C-style \Code{unsigned long long}
*/
#define H5T_NATIVE_ULLONG (H5OPEN H5T_NATIVE_ULLONG_g)
/**
* \ingroup PDTNAT
* C-style \Code{float}
*/
#define H5T_NATIVE_FLOAT (H5OPEN H5T_NATIVE_FLOAT_g)
/**
* \ingroup PDTNAT
* C-style \Code{double}
*/
#define H5T_NATIVE_DOUBLE (H5OPEN H5T_NATIVE_DOUBLE_g)
/**
* \ingroup PDTNAT
* C-style \Code{long double}
*/
#define H5T_NATIVE_LDOUBLE (H5OPEN H5T_NATIVE_LDOUBLE_g)
/**
* \ingroup PDTNAT
* HDF5 8-bit bitfield based on native types
*/
#define H5T_NATIVE_B8 (H5OPEN H5T_NATIVE_B8_g)
/**
* \ingroup PDTNAT
* HDF5 16-bit bitfield based on native types
*/
#define H5T_NATIVE_B16 (H5OPEN H5T_NATIVE_B16_g)
/**
* \ingroup PDTNAT
* HDF5 32-bit bitfield based on native types
*/
#define H5T_NATIVE_B32 (H5OPEN H5T_NATIVE_B32_g)
/**
* \ingroup PDTNAT
* HDF5 64-bit bitfield based on native types
*/
#define H5T_NATIVE_B64 (H5OPEN H5T_NATIVE_B64_g)
/**
* \ingroup PDTNAT
* HDF5 opaque unit based on native types
*/
#define H5T_NATIVE_OPAQUE (H5OPEN H5T_NATIVE_OPAQUE_g)
/**
* \ingroup PDTNAT
* HDF5 address type based on native types
*/
#define H5T_NATIVE_HADDR (H5OPEN H5T_NATIVE_HADDR_g)
/**
* \ingroup PDTNAT
* HDF5 size type based on native types
*/
#define H5T_NATIVE_HSIZE (H5OPEN H5T_NATIVE_HSIZE_g)
/**
* \ingroup PDTNAT
* HDF5 signed size type based on native types
*/
#define H5T_NATIVE_HSSIZE (H5OPEN H5T_NATIVE_HSSIZE_g)
/**
* \ingroup PDTNAT
* HDF5 error code type based on native types
*/
#define H5T_NATIVE_HERR (H5OPEN H5T_NATIVE_HERR_g)
/**
* \ingroup PDTNAT
* HDF5 Boolean type based on native types
*/
#define H5T_NATIVE_HBOOL (H5OPEN H5T_NATIVE_HBOOL_g)
H5_DLLVAR hid_t H5T_NATIVE_SCHAR_g;
H5_DLLVAR hid_t H5T_NATIVE_UCHAR_g;
H5_DLLVAR hid_t H5T_NATIVE_SHORT_g;
H5_DLLVAR hid_t H5T_NATIVE_USHORT_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_g;
H5_DLLVAR hid_t H5T_NATIVE_LONG_g;
H5_DLLVAR hid_t H5T_NATIVE_ULONG_g;
H5_DLLVAR hid_t H5T_NATIVE_LLONG_g;
H5_DLLVAR hid_t H5T_NATIVE_ULLONG_g;
H5_DLLVAR hid_t H5T_NATIVE_FLOAT_g;
H5_DLLVAR hid_t H5T_NATIVE_DOUBLE_g;
H5_DLLVAR hid_t H5T_NATIVE_LDOUBLE_g;
H5_DLLVAR hid_t H5T_NATIVE_B8_g;
H5_DLLVAR hid_t H5T_NATIVE_B16_g;
H5_DLLVAR hid_t H5T_NATIVE_B32_g;
H5_DLLVAR hid_t H5T_NATIVE_B64_g;
H5_DLLVAR hid_t H5T_NATIVE_OPAQUE_g;
H5_DLLVAR hid_t H5T_NATIVE_HADDR_g;
H5_DLLVAR hid_t H5T_NATIVE_HSIZE_g;
H5_DLLVAR hid_t H5T_NATIVE_HSSIZE_g;
H5_DLLVAR hid_t H5T_NATIVE_HERR_g;
H5_DLLVAR hid_t H5T_NATIVE_HBOOL_g;
/* C9x integer types */
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT8 (H5OPEN H5T_NATIVE_INT8_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT8 (H5OPEN H5T_NATIVE_UINT8_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_LEAST8 (H5OPEN H5T_NATIVE_INT_LEAST8_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_LEAST8 (H5OPEN H5T_NATIVE_UINT_LEAST8_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_FAST8 (H5OPEN H5T_NATIVE_INT_FAST8_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_FAST8 (H5OPEN H5T_NATIVE_UINT_FAST8_g)
H5_DLLVAR hid_t H5T_NATIVE_INT8_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT8_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_LEAST8_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_LEAST8_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_FAST8_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_FAST8_g;
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT16 (H5OPEN H5T_NATIVE_INT16_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT16 (H5OPEN H5T_NATIVE_UINT16_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_LEAST16 (H5OPEN H5T_NATIVE_INT_LEAST16_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_LEAST16 (H5OPEN H5T_NATIVE_UINT_LEAST16_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_FAST16 (H5OPEN H5T_NATIVE_INT_FAST16_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_FAST16 (H5OPEN H5T_NATIVE_UINT_FAST16_g)
H5_DLLVAR hid_t H5T_NATIVE_INT16_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT16_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_LEAST16_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_LEAST16_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_FAST16_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_FAST16_g;
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT32 (H5OPEN H5T_NATIVE_INT32_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT32 (H5OPEN H5T_NATIVE_UINT32_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_LEAST32 (H5OPEN H5T_NATIVE_INT_LEAST32_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_LEAST32 (H5OPEN H5T_NATIVE_UINT_LEAST32_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_FAST32 (H5OPEN H5T_NATIVE_INT_FAST32_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_FAST32 (H5OPEN H5T_NATIVE_UINT_FAST32_g)
H5_DLLVAR hid_t H5T_NATIVE_INT32_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT32_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_LEAST32_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_LEAST32_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_FAST32_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_FAST32_g;
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT64 (H5OPEN H5T_NATIVE_INT64_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT64 (H5OPEN H5T_NATIVE_UINT64_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_LEAST64 (H5OPEN H5T_NATIVE_INT_LEAST64_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_LEAST64 (H5OPEN H5T_NATIVE_UINT_LEAST64_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_INT_FAST64 (H5OPEN H5T_NATIVE_INT_FAST64_g)
/**
* \ingroup PDTC9x
*/
#define H5T_NATIVE_UINT_FAST64 (H5OPEN H5T_NATIVE_UINT_FAST64_g)
H5_DLLVAR hid_t H5T_NATIVE_INT64_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT64_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_LEAST64_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_LEAST64_g;
H5_DLLVAR hid_t H5T_NATIVE_INT_FAST64_g;
H5_DLLVAR hid_t H5T_NATIVE_UINT_FAST64_g;
/* Operations defined on all datatypes */
/**
* \ingroup H5T
*
* \brief Creates a new datatype.
*
* \param[in] type Class of datatype to create
* \param[in] size Size, in bytes, of the datatype being created
*
* \return \hid_t{datatype}
*
* \details H5Tcreate() creates a new datatype of the specified class with the
* specified number of bytes. This function is used only with the
* following datatype classes:
* - #H5T_COMPOUND
* - #H5T_OPAQUE
* - #H5T_ENUM
* - #H5T_STRING
*
* Other datatypes, including integer and floating-point datatypes,
* are typically created by using H5Tcopy() to copy and modify a
* predefined datatype.
*
* When creating a variable-length string datatype, \p size must
* be #H5T_VARIABLE; see \ref_vlen_strings.
*
* When creating a fixed-length string datatype, \p size will
* be the length of the string in bytes. The length of the
* string in characters will depend on i the encoding used; see
* #H5Pset_char_encoding.
*
* ENUMs created with this function have a signed native integer
* base datatype. Use H5Tenum_create() if a different integer base
* datatype is required.
*
* The datatype identifier returned from this function should be
* released with H5Tclose or resource leaks will result.
*
* \see H5Tclose()
*
* \since 1.2.0
*
*/
H5_DLL hid_t H5Tcreate(H5T_class_t type, size_t size);
/**
* \ingroup H5T
*
* \brief Copies an existing datatype.
*
* \type_id
*
* \return \hid_t{datatype}
*
* \details H5Tcopy() makes a copy of an existing datatype. The returned type
* is always transient and unlocked.
*
* The \p type_id argument can be either a datatype identifier,
* a predefined datatype (defined in H5Tpublic.h), or a dataset
* identifier. If \p type_id is a dataset identifier, this function
* returns a transient, modifiable datatype which is a copy of the
* dataset's datatype.
*
* The returned datatype identifier should be released with H5Tclose()
* to prevent resource leak.
*
*/
H5_DLL hid_t H5Tcopy(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Releases a datatype
*
* \type_id
*
* \return \herr_t
*
* \details H5Tclose() releases the datatype \p dtype_id. Further access
* through this datatype identifier is illegal. Failure to release
* a datatype with this call will result in resource leaks.
*
*/
H5_DLL herr_t H5Tclose(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Asynchronous version of H5Tclose().
*
*/
#ifndef H5_DOXYGEN
H5_DLL herr_t H5Tclose_async(const char *app_file, const char *app_func, unsigned app_line, hid_t type_id,
hid_t es_id);
#else
H5_DLL herr_t H5Tclose_async(hid_t type_id, hid_t es_id);
#endif
/**
* \ingroup H5T
*
* \brief Determines whether two datatype identifiers refer to the same datatype
*
* \type_id{type1_id}
* \type_id{type2_id}
*
* \return \htri_t
*
* \details H5Tequal() determines whether two datatype identifiers refer to
* the same datatype.
*
* \since 1.6 or earlier
*
*/
H5_DLL htri_t H5Tequal(hid_t type1_id, hid_t type2_id);
/**
* \ingroup H5T
*
* \brief Locks a datatype
*
* \type_id
*
* \return \herr_t
*
* \details H5Tlock() locks the datatype specified by the dtype_id identifier,
* making it read-only and non-destructible. This is normally done by
* the library for predefined datatypes so the application does not
* inadvertently change or delete a predefined type. Once a datatype
* is locked it can never be unlocked.
*
*/
H5_DLL herr_t H5Tlock(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Commits a transient datatype, linking it into the file and creating
* a new committed datatype
*
* \fg_loc_id
* \param[in] name Name given to committed datatype
* \type_id Identifier of datatype to be committed and, upon functions
* return, identifier for the committed datatype
* \lcpl_id
* \tcpl_id
* \tapl_id
*
* \return \herr_t
*
* \details H5Tcommit2() saves a transient datatype as an immutable committed
* datatype in a file. The datatype specified by \p dtype_id is
* committed to the file with the name name at the location specified
* by \p loc_id and with the datatype creation and access property
* lists \p tcpl_id and \p tapl_id, respectively.
*
* \p loc_id may be a file identifier, or a group identifier within
* that file. \p name may be either an absolute path in the file or
* a relative path from \p loc_id naming the newly-commited datatype.
*
* The link creation property list, \p lcpl_id, governs creation of
* the link(s) by which the new committed datatype is accessed and
* the creation of any intermediate groups that may be missing.
*
* Once committed, this datatype may be used to define the datatype
* of any other dataset or attribute in the file.
*
* This function will not accept a datatype that cannot actually hold
* information. This currently includes compound datatypes with no
* fields and enumerated datatypes with no members.
*
* Committed datatypes are sometimes referred to as named datatypes.
*
* \version 1.8.7 Function modified in this release to reject datatypes that
* will not accommodate actual data, such as a compound datatype
* with no fields or an enumerated datatype with no members.
*
* \since 1.8.0
*
*/
H5_DLL herr_t H5Tcommit2(hid_t loc_id, const char *name, hid_t type_id, hid_t lcpl_id, hid_t tcpl_id,
hid_t tapl_id);
/**
* \ingroup H5T
*
* \brief Asynchronous version of H5Tcommit2().
*
*/
#ifndef H5_DOXYGEN
H5_DLL herr_t H5Tcommit_async(const char *app_file, const char *app_func, unsigned app_line, hid_t loc_id,
const char *name, hid_t type_id, hid_t lcpl_id, hid_t tcpl_id, hid_t tapl_id,
hid_t es_id);
#else
H5_DLL herr_t H5Tcommit_async(hid_t loc_id, const char *name, hid_t type_id, hid_t lcpl_id, hid_t tcpl_id,
hid_t tapl_id, hid_t es_id);
#endif
/**
* --------------------------------------------------------------------------
* \ingroup H5T
*
* \brief Opens a committed (named) datatype
*
* \fgdta_loc_id
* \param[in] name Name of the datatype to open
* \tapl_id
*
* \return \hid_t{datatype}
*
* \details H5Topen2() opens a committed datatype at the location specified
* by \p loc_id and returns an identifier for the datatype. \p
* loc_id is either a file or group identifier. The identifier should
* eventually be closed by calling H5Tclose() to release resources.
*
* The committed datatype is opened with the datatype access property
* list tapl_id.
*
* \since 1.8.0
*
*/
H5_DLL hid_t H5Topen2(hid_t loc_id, const char *name, hid_t tapl_id);
/**
* \ingroup H5T
*
* \brief Asynchronous version of H5Topen2().
*
*/
#ifndef H5_DOXYGEN
H5_DLL hid_t H5Topen_async(const char *app_file, const char *app_func, unsigned app_line, hid_t loc_id,
const char *name, hid_t tapl_id, hid_t es_id);
#else
H5_DLL hid_t H5Topen_async(hid_t loc_id, const char *name, hid_t tapl_id, hid_t es_id);
#endif
/**
* \ingroup H5T
*
* \brief Commits a transient datatype to a file, creating a new named
* datatype, but does not link it into the file structure
*
* \fg_loc_id
* \type_id
* \tcpl_id
* \tapl_id
*
* \return \herr_t
*
* \details H5Tcommit_anon() commits a transient datatype (not immutable)
* to a file, turning it into a named datatype with the specified
* creation and property lists. With default property lists,
* #H5P_DEFAULT, H5Tcommit_anon() provides similar functionality to
* that of H5Tcommit(), with the differences described below.
*
* #H5P_DEFAULT can be passed in for the datatype creation property
* list identifier, \p tcpl_id. The datatype access property list
* identifier, \p tapl_id, is provided for future functionality and
* is not used at this time. This parameter should always be passed
* as the value #H5P_DEFAULT.
*
* Note that H5Tcommit_anon() does not link this newly-committed
* datatype into the file. After the H5Tcommit_anon() call, the
* datatype identifier \p type_id must be linked into the HDF5 file
* structure with H5Olink() or it will be deleted from the file when
* the file is closed.
*
* The differences between this function and H5Tcommit() are as follows:
* \li H5Tcommit_anon() explicitly includes property lists,
* which provides for greater control of the creation process
* and of the properties of the new named datatype. H5Tcommit()
* always uses default properties.
* \li H5Tcommit_anon() neither provides the new named datatypes
* name nor links it into the HDF5 file structure; those actions
* must be performed separately through a call to H5Olink(),
* which offers greater control over linking.
*
* This function will not accept a datatype that cannot actually
* hold data. This currently includes compound datatypes with no
* fields and enumerated datatypes with no members.
*
* \version 1.8.7 Function modified in this release to reject datatypes that
* will not accommodate actual data, such as a compound datatype
* with no fields or an enumerated datatype with no members.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tcommit_anon(hid_t loc_id, hid_t type_id, hid_t tcpl_id, hid_t tapl_id);
/**
* \ingroup H5T
*
* \brief Returns a copy of a datatype's creation property list
*
* \type_id
*
* \return \hid_t{datatype creation property list}
*
* \details H5Tget_create_plist() returns a property list identifier
* for the datatype creation property list associated with the datatype
* specified by \p type_id.
*
* The creation property list identifier should be released with
* H5Pclose() to prevent memory leaks.
*
* \since 1.8.0
*
*/
H5_DLL hid_t H5Tget_create_plist(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Determines whether a datatype is a committed type or a transient type
*
* \type_id
*
* \return \htri_t
*
* \details H5Tcommitted() queries a type to determine whether the type
* specified by the \p dtype_id identifier is a committed (formerly
* known as a \Emph{named}) type or a transient type. If this function returns
* a positive value, then the type is committed (that is, it has been
* committed, perhaps by some other application). Datasets which
* return committed datatypes with H5Dget_type() are able to share
* the datatype with other datasets in the same file.
*
* \version 1.8.0 Fortran API was added
*
* \since 1.6 or earlier
*
*/
H5_DLL htri_t H5Tcommitted(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Encodes a datatype object description into a binary buffer
*
* \param[in] obj_id Identifier of the object to be encoded
* \param[in,out] buf Buffer for the object to be encoded into.
* \param[in,out] nalloc IN: The size of the allocated buffer
* OUT: The size of the buffer needed
*
* \return \herr_t
*
* \details H5Tencode() Given datatype identifier, H5Tencode() converts a
* datatype description into binary form in a buffer. Using this
* binary form in the buffer, a datatype object can be reconstructed
* using H5Tdecode() to return a new object handle (\ref hid_t) for
* this datatype.
*
* If the provided buffer is NULL, only the size of buffer needed is
* returned through \p nalloc.
*
* A preliminary H5Tencode() call can be made to find out the size
* of the buffer needed. This value is returned as \p nalloc. That
* value can then be assigned to \p nalloc for a second H5Tencode()
* call, which will retrieve the actual encoded object.
*
* If the library finds that \p nalloc is not big enough for the
* object, it simply returns the size of the buffer needed through
* \p nalloc without encoding the provided buffer.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tencode(hid_t obj_id, void *buf, size_t *nalloc);
/**
* \ingroup H5T
*
* \brief Decodes a binary object description of datatype and return a new
* object handle
*
* \param[in] buf Buffer for the datatype object to be decoded
*
* \return \hid_t{datatype}
*
* \details H5Tdecode() Given an object description of datatype in binary in a
* buffer, H5Tdecode() reconstructs the HDF5 datatype object and
* returns a new object handle for it. The binary description of
* the object is encoded by H5Tencode(). User is responsible for
* passing in the right buffer.
*
* The datatype identifier returned by this function can be released
* with H5Tclose() when the identifier is no longer needed so that
* resource leaks will not develop.
*
*/
H5_DLL hid_t H5Tdecode(const void *buf);
/**
* \ingroup H5T
*
* \brief Flushes all buffers associated with a committed datatype to disk
*
* \type_id
*
* \return \herr_t
*
* \details H5Tflush() causes all buffers associated with a committed datatype
* \p type_id to be immediately flushed to disk without removing the
* data from the cache.
*
* HDF5 does not possess full control over buffering. H5Tflush()
* flushes the internal HDF5 buffers and then asks the operating
* system (the OS) to flush the system buffers for the open
* files. After that, the OS is responsible for ensuring that the
* data is actually flushed to disk.
*
* \return \herr_t
*
* \since 1.10.0 C function introduced with this release.
*
* \see H5Dflush()
* H5Drefresh()
* H5Tflush()
* H5Grefresh()
* H5Oflush()
* H5Orefresh()
* H5Tflush()
* H5Trefresh()
* H5Fstart_swmr_write()
* H5Pget_append_flush()
* H5Pget_object_flush_cb()
* H5Pset_append_flush()
* H5Pset_object_flush_cb()
*
*/
H5_DLL herr_t H5Tflush(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Refreshes all buffers associated with a committed datatype
*
* \type_id
*
* \return \herr_t
*
* \details H5Trefresh() causes all buffers associated with a committed
* datatype to be cleared and immediately re-loaded with updated
* contents from disk.
*
* This function essentially closes the datatype, evicts all
* metadata associated with it from the cache, and then re-opens the
* datatype. The reopened datatype is automatically re-registered
* with the same identifier.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Trefresh(hid_t type_id);
/* Operations defined on compound datatypes */
/**
* \ingroup COMPOUND
*
* \brief Adds a new member to a compound datatype.
*
* \type_id{parent_id}
* \param[in] name Name of the field to insert
* \param[in] offset Offset in memory structure of the field to insert
* \param[in] member_id Datatype identifier of the field to insert
*
* \return \herr_t
*
* \details H5Tinsert() adds another member to the compound datatype, specified
* \p type_id.
*
* The new member has a \p name which must be unique within the
* compound datatype. The \p offset argument defines the start of the
* member in an instance of the compound datatype, and \p member_id
* is the datatype identifier of the new member.
*
* \note Members of a compound datatype do not have to be atomic
* datatypes; a compound datatype can have a member which is a
* compound datatype.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tinsert(hid_t parent_id, const char *name, size_t offset, hid_t member_id);
/**
* \ingroup COMPOUND
*
* \brief Recursively removes padding from within a compound datatype
*
* \type_id
*
* \return \herr_t
*
* \details H5Tpack() recursively removes padding from within a compound
* datatype to make it more efficient (space-wise) to store that data.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tpack(hid_t type_id);
/* Operations defined on enumeration datatypes */
/**
* \ingroup ENUM
*
* \brief Creates a new enumeration datatype
*
* \param[in] base_id Datatype identifier for the base datatype. Must be an
* integer datatype
*
* \return \hid_t{enumeration datatype}
*
* \details H5Tenum_create() creates a new enumeration datatype based on the
* specified base datatype, dtype_id, which must be an integer datatype.
*
* If a particular architecture datatype is required, a little endian
* or big endian datatype for example, use a native datatype as the
* base datatype and use H5Tconvert() on values as they are read
* from or written to a dataset.
*
* \since 1.2.0
*
*/
H5_DLL hid_t H5Tenum_create(hid_t base_id);
/**
* \ingroup ENUM
*
* \brief Inserts a new enumeration datatype member
*
* \type_id{type}
* \param[in] name Name of the new member
* \param[in] value Pointer to the value of the new member
*
* \return \herr_t
*
* \details H5Tenum_insert() inserts a new enumeration datatype member into an
* enumeration datatype.
*
* \p type_id is the datatype identifier for the enumeration datatype,
* \p name is the name of the new member, and \p value points to the
* value of the new member.
*
* \p name and \p value must both be unique within \p dtype_id.
*
* \p value points to data which must be of the integer base datatype
* used when the enumeration datatype was created. If a particular
* architecture datatype is required, a little endian or big endian
* datatype for example, use a native datatype as the base datatype
* and use H5Tconvert() on values as they are read from or written
* to a dataset.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tenum_insert(hid_t type, const char *name, const void *value);
/**
* \ingroup ENUM
*
* \brief Returns the symbol name corresponding to a specified member of an
* enumeration datatype
*
* \type_id{type}
* \param[in] value Value of the enumeration datatype
* \param[out] name Buffer for output of the symbol name
* \param[in] size Anticipated size of the symbol name, in bytes
*
* \return Returns a non-negative value if successful. Otherwise returns a
* negative value
*
* \details H5Tenum_nameof() finds the symbol name that corresponds to the
* specified \p value of the enumeration datatype \p type.
*
* At most \p size characters of the symbol \p name are copied into
* the \p name buffer. If the entire symbol name and null terminator
* do not fit in the name buffer, then as many characters as possible
* are copied (not null terminated) and the function fails.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tenum_nameof(hid_t type, const void *value, char *name /*out*/, size_t size);
/**
* \ingroup ENUM
*
* \brief Returns the value corresponding to a specified member of an
* enumeration datatype
*
* \type_id{type}
* \param[in] name Symbol name of the enumeration datatype
* \param[out] value Buffer for the value of the enumeration datatype
*
* \return \herr_t
*
* \details H5Tenum_valueof() finds the value that corresponds to the
* specified name of the enumeration datatype \p dtype_id.
*
* Values returned in \p value will be of the enumerated types
* base type, that is, the datatype used by H5Tenum_create() when
* the enumerated type was created.
*
* The \p value buffer must be at least large enough to hold a value
* of that base type. If the size is unknown, you can determine it
* with H5Tget_size().
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tenum_valueof(hid_t type, const char *name, void *value /*out*/);
/* Operations defined on variable-length datatypes */
/**
* \ingroup VLEN
*
* \brief Creates a new variable-length array datatype
*
* \type_id{base_id}, the element type of the datatype to create
*
* \return \hid_t{variable-length datatype}
*
* \details H5Tvlen_create() creates a new one-dimensional array datatype of
* variable-length (VL) with the base datatype \p base_id.
*
* This one-dimensional array often represents a data sequence of the
* base datatype, such as characters for character sequences or vertex
* coordinates for polygon lists. The base type specified for the VL
* datatype can be any HDF5 datatype, including another VL datatype, a
* compound datatype, or an atomic datatype.
*
* When necessary, use H5Tget_super() to determine the base type of
* the VL datatype.
*
* The datatype identifier returned from this function should be
* released with H5Tclose() or resource leaks will result. Under
* certain circumstances, H5Dvlen_reclaim() must also be used.
*
* \attention H5Tvlen_create() cannot be used to create a variable-length
* string datatype. H5Tvlen_create() called with a string or
* character base type creates a variable-length sequence of strings
* (a variable-length, 1-dimensional array), with each element of
* the array being of the string or character base type.\n
* To create a variable-length string datatype, see \ref_vlen_strings.
*
*/
H5_DLL hid_t H5Tvlen_create(hid_t base_id);
/* Operations defined on array datatypes */
/**
* \ingroup ARRAY
*
* \brief Creates an array datatype object
*
* \param[in] base_id Datatype identifier for the array base datatype
* \param[in] ndims Rank of the array
* \param[in] dim Size of each array dimension
*
* \return \hid_t{array datatype}
*
* \details H5Tarray_create2() creates a new array datatype object.\n\n
* \p base_id is the datatype of every element of the array, i.e.,
* of the number at each position in the array.
*
* \p ndims is the number of dimensions and the size of each dimension
* is specified in the array \p dim. The value of \p rank is
* currently limited to #H5S_MAX_RANK and must be greater than 0
* (zero). All dimension sizes specified in \p dim must be greater
* than 0 (zero).
*
* \since 1.8.0
*
*/
H5_DLL hid_t H5Tarray_create2(hid_t base_id, unsigned ndims, const hsize_t dim[/* ndims */]);
/**
* \ingroup ARRAY
*
* \brief Returns the rank of an array datatype
*
* \type_id
*
* \return Returns the rank of the array if successful; otherwise returns a
* negative value.
*
* \details H5Tget_array_ndims() returns the rank, i.e., the number of
* dimensions, of an array datatype object.
*
* \since 1.2.0
*
*/
H5_DLL int H5Tget_array_ndims(hid_t type_id);
/**
* \ingroup ARRAY
*
* \brief Retrieves sizes of array dimensions
*
* \type_id
* \param[out] dims Sizes of array dimensions
*
* \return Returns the non-negative number of dimensions of the array type
* if successful; otherwise returns a negative value.
*
* \details H5Tget_array_dims2() returns the sizes of the dimensions of the
* specified array datatype object in the array \p dims.
*
* \since 1.2.0
*
*/
H5_DLL int H5Tget_array_dims2(hid_t type_id, hsize_t dims[]);
/* Operations defined on opaque datatypes */
/**
* \ingroup OPAQUE
*
* \brief Tags an opaque datatype
*
* \type_id{type} of an opaque datatype
* \param[in] tag Descriptive ASCII string with which the opaque datatype is
* to be tagged
*
* \return \herr_t
*
* \details H5Tset_tag() tags an opaque datatype \p type with a descriptive
* ASCII identifier, \p tag.
*
* \p tag is intended to provide a concise description; the maximum
* size is hard-coded in the HDF5 library as 256 bytes
* (#H5T_OPAQUE_TAG_MAX).
*
* \version 1.6.5 The #H5T_OPAQUE_TAG_MAX macro constant, specifying the
* maximum size of an opaque datatype tag, was added in
* H5Tpublic.h.
*
*/
H5_DLL herr_t H5Tset_tag(hid_t type, const char *tag);
/**
* \ingroup OPAQUE
*
* \brief Gets the tag associated with an opaque datatype
*
* \type_id{type} of an opaque datatype
*
* \return Returns a pointer to an allocated string if successful; otherwise
* returns NULL.
*
* \details H5Tget_tag() returns the tag associated with the opaque datatype
* \p type.
*
* \attention The tag is returned via a pointer to an allocated string, which
* the caller must free.
*
*/
H5_DLL char *H5Tget_tag(hid_t type);
/* Querying property values */
/**
* \ingroup H5T
*
* \brief Returns the base datatype from which a datatype is derived
*
* \type_id{type}
*
* \return \hid_t{datatype}
*
* \details H5Tget_super() returns the base datatype from which the datatype
* \p type_id is derived. In the case of an enumeration type, the
* return value is an integer type.
*
* The datatype identifier returned by this function must be released
* with H5Tclose() when the identifier is no longer needed so that
* resource leaks will not develop.
*
*/
H5_DLL hid_t H5Tget_super(hid_t type);
/**
* \ingroup H5T
*
* \brief Returns a datatype class
*
* \type_id
*
* \return Returns the datatype class if successful; otherwise #H5T_NO_CLASS.
*
* \details H5Tget_class() returns the class of the datatype \p type_id.
* Valid class identifiers, as defined in H5Tpublic.h, are:
* \snippet this H5T_class_t_snip
*
* \note The library returns #H5T_STRING for both fixed-length and
* variable-length strings.
*
* \note Unsupported datatype: The time datatype class, #H5T_TIME,
* is not supported. If #H5T_TIME is used, the resulting data will
* be readable and modifiable only on the originating computing
* platform; it will not be portable to other platforms.
*
*/
H5_DLL H5T_class_t H5Tget_class(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Determines whether a datatype contains any datatypes of the given
* datatype class
*
* \type_id
* \param[in] cls Datatype class
*
* \return \htri_t
*
* \details H5Tdetect_class() determines whether the datatype specified in
* \p type_id contains any datatypes of the datatype class specified
* in \p dtype_class.
*
* This function is useful primarily in recursively examining all the
* fields and/or base types of compound, array, and variable-length
* datatypes.
*
* Valid class identifiers, as defined in H5Tpublic.h, are:
* \snippet this H5T_class_t_snip
*
* \since 1.6.0
*
*/
H5_DLL htri_t H5Tdetect_class(hid_t type_id, H5T_class_t cls);
/**
* \ingroup H5T
*
* \brief Returns the size of a datatype
*
* \type_id
*
* \return Returns the size of the datatype in bytes if successful; otherwise,
* returns 0.
*
* \details H5Tget_size() returns the size of a datatype in bytes.
* \li For atomic datatypes, array datatypes, compound datatypes, and
* other datatypes of a constant size, the returned value is the
* size of the actual datatype in bytes.
* \li For variable-length string datatypes the returned value is
* the size of the pointer to the actual string, or \c sizeof(\c
* char \c *). This function does not return the size of actual
* variable-length string data.
* \li For variable-length sequence datatypes (see H5Tvlen_create()),
* the returned value is the size of the \p hvl_t struct, or \c
* sizeof(\p hvl_t). The \p hvl_t struct contains a pointer to the
* actual data and a size value. This function does not return the
* size of actual variable-length sequence data.
*
* \see H5Tset_size()
*
* \since 1.2.0
*/
H5_DLL size_t H5Tget_size(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Returns the byte order of an atomic datatype
*
* \type_id
*
* \return Returns a byte order constant if successful; otherwise returns
* #H5T_ORDER_ERROR (-1)
*
* \details H5Tget_order() returns the byte order of an atomic datatype.
* Possible return values are:
* \snippet this H5T_order_t_snip
* Members of a compound datatype need not have the same byte
* order. If members of a compound datatype have more than one of
* little endian, big endian, or VAX byte order, H5Tget_order() will
* return #H5T_ORDER_MIXED for the compound datatype. A byte order of
* #H5T_ORDER_NONE will, however, be ignored; for example, if one or
* more members of a compound datatype have byte order #H5T_ORDER_NONE
* but all other members have byte order #H5T_ORDER_LE, H5Tget_order()
* will return #H5T_ORDER_LE for the compound datatype.
*
* \since 1.2.0
*
*/
H5_DLL H5T_order_t H5Tget_order(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Returns the precision of an atomic datatype
*
* \type_id
*
* \return Returns the number of significant bits if successful; otherwise 0
*
* \details H5Tget_precision() returns the precision of an atomic datatype
* (for example, integer or float) or a datatype whose base (parent)
* type is an atomic type (for example, array, enum and variable
* length). The precision is the number of significant bits which,
* unless padding is present, is 8 times larger than the value
* returned by H5Tget_size().
*
* \since 1.2.0
*
*/
H5_DLL size_t H5Tget_precision(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Retrieves the bit offset of the first significant bit
*
* \type_id
*
* \return Returns an offset value if successful; otherwise returns a
* negative value.
*
* \details H5Tget_offset() retrieves the bit offset of the first significant
* bit. The significant bits of an atomic datum can be offset from the
* beginning of the memory for that datum by an amount of padding. The
* 'offset' property specifies the number of bits of padding that
* appear to the "right of" the value. That is, if we have a 32-bit
* datum with 16-bits of precision having the value 0x1122 then it
* will be laid out in memory as (from small byte address toward
* larger byte addresses):
* \code{.unparsed}
* 0: [ pad] [0x11] [0x22] [ pad]
* 1: [ pad] [0x22] [0x11] [ pad]
* 2: [0x11] [ pad] [ pad] [0x22]
* 3: [0x22] [ pad] [ pad] [0x11]
* \endcode
*
* \since 1.2.0
*
*/
H5_DLL int H5Tget_offset(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Retrieves the padding type of the least and most-significant bit padding
*
* \type_id
* \param[out] lsb Buffer for the least-significant bit padding type
* \param[out] msb Buffer for the most-significant bit padding type
*
* \return \herr_t
*
* \details H5Tget_pad() retrieves the padding type of the least and
* most-significant bit padding. Valid padding types are:
* \snippet this H5T_pad_t_snip
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tget_pad(hid_t type_id, H5T_pad_t *lsb /*out*/, H5T_pad_t *msb /*out*/);
/**
* \ingroup ATOM
*
* \brief Retrieves the sign type for an integer type
*
* \type_id
*
* \return Returns a valid sign type if successful; otherwise #H5T_SGN_ERROR (-1)
*
* \details H5Tget_sign() retrieves the sign type for an integer type.
* Valid types are:
* \snippet this H5T_sign_t_snip
*
* \since 1.2.0
*
*/
H5_DLL H5T_sign_t H5Tget_sign(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Retrieves floating point datatype bit field information
*
* \type_id
* \param[out] spos Pointer to location to return floating-point sign bit
* \param[out] epos Pointer to location to return exponent bit-position
* \param[out] esize Pointer to location to return size of exponent in bits
* \param[out] mpos Pointer to location to return mantissa bit-position
* \param[out] msize Pointer to location to return size of mantissa in bits
*
* \return \herr_t
*
* \details H5Tget_fields() retrieves information about the locations of
* the various bit fields of a floating point datatype. The field
* positions are bit positions in the significant region of the
* datatype. Bits are numbered with the least significant bit number
* zero. Any (or even all) of the arguments can be null pointers.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tget_fields(hid_t type_id, size_t *spos /*out*/, size_t *epos /*out*/, size_t *esize /*out*/,
size_t *mpos /*out*/, size_t *msize /*out*/);
/**
* \ingroup ATOM
*
* \brief Retrieves the exponent bias of a floating-point type
*
* \type_id
*
* \return Returns the bias if successful and 0, otherwise.
*
* \details H5Tget_ebias() retrieves the exponent bias of a floating-point type.
*
* \since 1.2.0
*
*/
H5_DLL size_t H5Tget_ebias(hid_t type_id);
/**
* --------------------------------------------------------------------------
* \ingroup ATOM
*
* \brief Retrieves mantissa normalization of a floating-point datatype
*
* \type_id
*
* \return Returns a valid normalization type if successful; otherwise
* returns #H5T_NORM_ERROR (-1)
*
* \details H5Tget_norm() retrieves the mantissa normalization of a
* floating-point datatype. Valid normalization types are:
* \snippet this H5T_norm_t_snip
*
* \since 1.2.0
*
*/
H5_DLL H5T_norm_t H5Tget_norm(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Retrieves the internal padding type for unused bits in floating-point
* datatypes
*
* \type_id
*
* \return Returns a valid padding type if successful; otherwise returns
* #H5T_PAD_ERROR (-1).
*
* \details H5Tget_inpad() retrieves the internal padding type for unused
* bits in floating-point datatypes. Valid padding types are:
* \snippet this H5T_pad_t_snip
*
* \since 1.2.0
*
*/
H5_DLL H5T_pad_t H5Tget_inpad(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Retrieves the type of padding used for a string datatype
*
* \type_id
*
* \return Returns a valid string of the padding if successful; otherwise
* returns #H5T_STR_ERROR (-1)
*
* \details H5Tget_strpad() retrieves the type of padding used for a string
* datatype.
*
* The string padding type is set with H5Tset_strpad(). Possible
* values returned are:
* \str_pad_type
*
* \since 1.2.0
*
*/
H5_DLL H5T_str_t H5Tget_strpad(hid_t type_id);
/**
* \ingroup COMPENUM
*
* \brief Retrieves the number of elements in a compound or enumeration datatype
*
* \type_id
*
* \return Returns the number of elements if successful; otherwise returns a
* negative value.
*
* \details H5Tget_nmembers() retrieves the number of fields in a compound
* datatype or the number of members of an enumeration datatype.
*
* \since 1.2.0
*
*/
H5_DLL int H5Tget_nmembers(hid_t type_id);
/**
* \ingroup COMPENUM
*
* \brief Retrieves the name of a compound or enumeration datatype member
*
* \type_id
* \param[in] membno Zero-based index of the field or element
*
* \return Returns a valid pointer to a string allocated with malloc() if
* successful; otherwise returns NULL.
*
* \details H5Tget_member_name() retrieves the name of a field of a compound
* datatype or an element of an enumeration datatype.
*
* The index of the target field or element is specified in \p
* member_no. Compound datatype fields and enumeration datatype
* elements are stored in no particular order with index values of
* 0 through N-1, where N is the value returned by H5Tget_nmembers().
*
* The HDF5 library allocates a buffer to receive the name of
* the field. The caller must subsequently free the buffer with
* H5free_memory().
*
* \since 1.2.0
*
*/
H5_DLL char *H5Tget_member_name(hid_t type_id, unsigned membno);
/**
* \ingroup COMPENUM
*
* \brief Retrieves the index of a compound or enumeration datatype member
*
* \type_id
* \param[in] name Name of the field or member
*
* \return \herr_t
*
* \details H5Tget_member_index() retrieves the index of a field of a compound
* datatype or an element of an enumeration datatype.
*
* The name of the target field or element is specified by \p name.
*
* Fields are stored in no particular order with index values of 0
* through N-1, where N is the value returned by H5Tget_nmembers() .
*
* \since 1.2.0
*
*/
H5_DLL int H5Tget_member_index(hid_t type_id, const char *name);
/**
* \ingroup COMPOUND
*
* \brief Retrieves the offset of a field of a compound datatype
*
* \type_id
* \param[in] membno Zero-based index of the field or element
*
* \return Returns the byte offset of the field if successful; otherwise
* returns 0 (zero).
*
* \details H5Tget_member_offset() retrieves the byte offset of the beginning
* of a field within a compound datatype with respect to the beginning
* of the compound datatype datum.
*
* Note that zero is a valid offset and that this function will fail
* only if a call to H5Tget_member_class() fails with the same arguments.
*
* \version 1.6.4 \p member_no parameter type changed to unsigned.
*
* \since 1.2.0
*
*/
H5_DLL size_t H5Tget_member_offset(hid_t type_id, unsigned membno);
/**
* \ingroup COMPOUND
*
* \brief Returns datatype class of compound datatype member
*
* \type_id
* \param[in] membno Zero-based index of the field or element
*
* \return Returns the datatype class, a non-negative value, if successful;
* otherwise returns a negative value.
*
* \details Given a compound datatype, \p dtype_id, H5Tget_member_class()
* returns the datatype class of the member specified by \p member_no.
*
* Valid class identifiers, as defined in H5Tpublic.h, are:
* \snippet this H5T_class_t_snip
*
* \since 1.2.0
*
*/
H5_DLL H5T_class_t H5Tget_member_class(hid_t type_id, unsigned membno);
/**
* \ingroup COMPOUND
*
* \brief Returns the datatype of the specified member
*
* \type_id
* \param[in] membno Zero-based index of the field or element
*
* \return Returns the identifier of a copy of the datatype of the field if
* successful; otherwise returns a negative value.
*
* \details H5Tget_member_type() returns the datatype of the specified member.
* The caller should invoke H5Tclose() to release resources associated
* with the type.
*
* \version 1.6.4 \p membno parameter type changed to unsigned.
*
* \since 1.2.0
*
*/
H5_DLL hid_t H5Tget_member_type(hid_t type_id, unsigned membno);
/**
* \ingroup ENUM
*
* \brief Returns the value of an enumeration datatype member
*
* \type_id
* \param[in] membno Number of the enumeration datatype member
* \param[out] value Buffer for the value of the enumeration datatype member
*
* \return \herr_t
*
* \details H5Tget_member_value() returns the value of the enumeration datatype
* member \p member_no.
*
* The member value is returned in a user-supplied buffer pointed to
* by \p value. Values returned in \p value will be of the enumerated
* types base type, that is, the datatype used by H5Tenum_create()
* when the enumerated type was created.
*
* The value buffer must be at least large enough to hold a value
* of that base type. If the size is unknown, you can determine it
* with H5Tget_size().
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tget_member_value(hid_t type_id, unsigned membno, void *value /*out*/);
/**
* \ingroup ATOM
*
* \brief Retrieves the character set type of a string datatype
*
* \type_id
*
* \return Returns a valid character set type if successful; otherwise
* #H5T_CSET_ERROR (-1).
*
* \details H5Tget_cset() retrieves the character set type of a string datatype.
* Valid character set types are:
* \csets
*
* \since 1.2.0
*
*/
H5_DLL H5T_cset_t H5Tget_cset(hid_t type_id);
/**
* \ingroup ATOM
*
* \brief Determines whether datatype is a variable-length string
*
* \type_id
*
* \return Returns:
* \li a positive value if the specified datatype is a variable-length
* string
* \li 0 if the specified datatype is not a variable-length string
* \li a negative value when the function fails
*
* \details H5Tis_variable_str() determines whether the datatype identified
* by \p dtype_id is a variable-length string.
*
* This function can be used to distinguish between fixed and
* variable-length string datatypes.
*
* \since 1.6.0
*
*/
H5_DLL htri_t H5Tis_variable_str(hid_t type_id);
/**
* \ingroup H5T
*
* \brief Returns the native datatype identifier of a specified datatype
*
* \type_id
* \param[in] direction Direction of search
*
* \return \hid_t{native datatype}
*
* \details H5Tget_native_type() returns the equivalent native datatype
* identifier for the datatype specified by \p type_id.
*
* H5Tget_native_type() is designed primarily to facilitate use of
* the H5Dread() function, for which users otherwise must undertake a
* multi-step process to determine the native datatype of a dataset
* prior to reading it into memory. This function can be used for
* the following purposes:
*
* \li To determine the native datatype of an atomic datatype
* \li To determine the base datatype of an array, enumerated, or
* variable-length datatype
* \li To determine the native atomic datatypes of the individual
* components of a compound datatype
*
* For example, if \p type_id is a compound datatype, the returned
* datatype identifier will be for a similar compound datatype with
* each element converted to the corresponding native datatype;
* nested compound datatypes will be unwound. If \p type_id is an
* array, the returned datatype identifier will be for the native
* datatype of a single array element.
*
* H5Tget_native_type() selects the first matching native datatype
* from the following list:
*
* \li #H5T_NATIVE_CHAR
* \li #H5T_NATIVE_SHORT
* \li #H5T_NATIVE_INT
* \li #H5T_NATIVE_LONG
* \li #H5T_NATIVE_LLONG
*
* \li #H5T_NATIVE_UCHAR
* \li #H5T_NATIVE_USHORT
* \li #H5T_NATIVE_UINT
* \li #H5T_NATIVE_ULONG
* \li #H5T_NATIVE_ULLONG
*
* \li #H5T_NATIVE_FLOAT
* \li #H5T_NATIVE_DOUBLE
* \li #H5T_NATIVE_LDOUBLE
*
* \li #H5T_NATIVE_B8
* \li #H5T_NATIVE_B16
* \li #H5T_NATIVE_B32
* \li #H5T_NATIVE_B64
*
* The direction parameter indicates the order in which the library
* searches for a native datatype match. Valid values for direction
* are as follows:
* \snippet this H5T_direction_t_snip
*
* H5Tget_native_type() is designed primarily for use with integer,
* floating point, and bitfield datatypes. String, time, opaque, and
* reference datatypes are returned as a copy of dtype_id. See above
* for compound, array, enumerated, and variable-length datatypes.
*
* The identifier returned by H5Tget_native_type() should eventually
* be closed by calling H5Tclose() to release resources.
*
* \note Please note that a datatype is actually an object
* identifier or handle returned from opening the datatype. It
* is not persistent and its value can be different from one HDF5
* session to the next.
*
* \note H5Tequal() can be used to compare datatypes.
*
* \note HDF5 High Level APIs that may also be of interest are: H5LTdtype_to_text()
* creates a text description of a datatype. H5LTtext_to_dtype() creates an
* HDF5 datatype given a text description.
*
* \since 1.6.0
*
*/
H5_DLL hid_t H5Tget_native_type(hid_t type_id, H5T_direction_t direction);
/* Setting property values */
/**
* \ingroup H5T
*
* \brief Sets size for a datatype.
*
* \type_id
* \param[in] size New datatype size is bytes or #H5T_VARIABLE
*
* \return \herr_t
*
* \details H5Tset_size() sets the total size, \p size, in bytes, for a
* datatype.
*
* \p size must have a positive value, unless it is passed in as
* #H5T_VARIABLE and the datatype is a string datatype.
*
* \li Numeric datatypes: If the datatype is atomic and the size
* is decreased so that significant bits of the datatype extend
* beyond the edge of the new size, then the offset property of the
* datatype is decreased toward zero. If the offset becomes zero
* and the significant bits of the datatype still hang over the edge
* of the new size, then the number of significant bits is decreased.
*
* \li String or character datatypes: The size set for a string
* datatype should include space for the null-terminator character,
* otherwise it will not be stored on (or retrieved from)
* disk. Adjusting the size of a string automatically sets the
* precision to \p 8*size.
*
* \li Variable-length string datatypes: If \p dtype_id is a
* variable-length string, size must normally be set to #H5T_VARIABLE.
* See \ref_vlen_strings.
*
* \li Compound datatypes: This function may be used to increase or
* decrease the size of a compound datatype, but the function will
* fail if the new size is too small to accommodate all member fields.
*
* \li Ineligible datatypes: This function cannot be used with
* enumerated datatypes (#H5T_ENUM), array datatypes (#H5T_ARRAY),
* variable-length array datatypes (#H5T_VLEN), or reference datatypes
* (#H5T_REFERENCE).
*
* \see H5Tget_size()
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_size(hid_t type_id, size_t size);
/**
* \ingroup ATOM
*
* \brief Sets the byte order of a datatype
*
* \type_id
* \param[in] order Byte order constant
*
* \return \herr_t
*
* \details H5Tset_order() sets the byte order of a datatype.\n
* Byte order can currently be set to any of the following:
* \snippet this H5T_order_t_snip
* #H5T_ORDER_MIXED (3) is a valid value for order only when
* returned by the function H5Tget_order(); it cannot be set with
* H5Tset_order().
*
* #H5T_ORDER_NONE (4) is a valid value for order, but it has no
* effect. It is valid only for fixed-length strings and object and
* region references and specifies “no particular order.”
*
* The byte order of a derived datatype is initially the same as
* that of the parent type, but can be changed with H5Tset_order().
*
* This function cannot be used with a datatype after it has been
* committed.
*
* \note Special considerations:
* \li ENUM datatypes: Byte order must be set before any member on
* an ENUM is defined.
* \li Compound datatypes: Byte order is set individually on each member
* of a compound datatype; members of a compound datatype need not
* have the same byte order.
* \li Opaque datatypes: Byte order can be set but has no effect.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_order(hid_t type_id, H5T_order_t order);
/**
* \ingroup ATOM
*
* \brief Sets the precision of an atomic datatype
*
* \type_id
* \param[in] prec Number of bits of precision for datatype
*
* \return \herr_t
*
* \details H5Tset_precision() sets the precision of an atomic datatype. The
* precision is the number of significant bits which, unless
* padding is present, is 8 times larger than the value returned
* by H5Tget_size().
*
* If the precision is increased then the offset is decreased and
* then the size is increased to insure that significant bits do not
* "hang over" the edge of the datatype.
*
* Changing the precision of an #H5T_STRING automatically changes
* the size as well. The precision must be a multiple of 8.
*
* When decreasing the precision of a floating point type, set the
* locations and sizes of the sign, mantissa, and exponent fields
* first.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_precision(hid_t type_id, size_t prec);
/**
* \ingroup ATOM
*
* \brief Sets the bit offset of the first significant bit
*
* \type_id
* \param[in] offset Offset of first significant bit
*
* \return \herr_t
*
* \details H5Tset_offset() sets the bit offset of the first significant
* bit. The significant bits of an atomic datum can be offset from
* the beginning of the memory for that datum by an amount of
* padding. The offset property specifies the number of bits of
* padding that appear “to the right of” the value. That is,
* if we have a 32-bit datum with 16-bits of precision having the
* value 0x1122, then it will be laid out in memory as (from small
* byte address toward larger byte addresses):
* \code{.unparsed}
* 0: [ pad] [0x11] [0x22] [ pad]
* 1: [ pad] [0x22] [0x11] [ pad]
* 2: [0x11] [ pad] [ pad] [0x22]
* 3: [0x22] [ pad] [ pad] [0x11]
* \endcode
* If the offset is incremented then the total size is incremented
* also if necessary to prevent significant bits of the value from
* hanging over the edge of the datatype.
*
* The offset of an #H5T_STRING cannot be set to anything but zero.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_offset(hid_t type_id, size_t offset);
/**
* \ingroup ATOM
*
* \brief Sets the least and most-significant bits padding types
*
* \type_id
* \param[in] lsb Padding type for least-significant bits
* \param[in] msb Padding type for most-significant bits
*
* \return \herr_t
*
* \details H5Tset_pad() sets the least and most-significant bits padding types.
* Available values are:
* \padding_type
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_pad(hid_t type_id, H5T_pad_t lsb, H5T_pad_t msb);
/**
* \ingroup ATOM
*
* \brief Sets the sign property for an integer type
*
* \type_id
* \param[in] sign Sign type
*
* \return \herr_t
*
* \details H5Tset_sign() sets the sign property for an integer type:
* \sign_prop
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_sign(hid_t type_id, H5T_sign_t sign);
/**
* \ingroup ATOM
*
* \brief Sets locations and sizes of floating point bit fields
*
* \type_id
* \param[in] spos Sign position, i.e., the bit offset of the floating-point
* sign bit
* \param[in] epos Exponent bit position
* \param[in] esize Size of exponent in bits
* \param[in] mpos Mantissa bit position
* \param[in] msize Size of mantissa in bits
*
* \return \herr_t
*
* \details H5Tset_fields() sets the locations and sizes of the various
* floating-point bit fields. The field positions are bit positions
* in the significant region of the datatype. Bits are numbered with
* the least significant bit number zero.
*
* Fields are not allowed to extend beyond the number of bits of
* precision, nor are they allowed to overlap with one another.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_fields(hid_t type_id, size_t spos, size_t epos, size_t esize, size_t mpos, size_t msize);
/**
* \ingroup ATOM
*
* \brief Sets the exponent bias of a floating-point type
*
* \type_id
* \param[in] ebias Exponent bias value
*
* \return \herr_t
*
* \details H5Tset_ebias() sets the exponent bias of a floating-point type.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_ebias(hid_t type_id, size_t ebias);
/**
* \ingroup ATOM
*
* \brief Sets the mantissa normalization of a floating-point datatype
*
* \type_id
* \param[in] norm Mantissa normalization type
*
* \return \herr_t
*
* \details H5Tset_norm() sets the mantissa normalization of a floating-point
* datatype. Valid normalization types are:
* \snippet this H5T_norm_t_snip
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_norm(hid_t type_id, H5T_norm_t norm);
/**
* \ingroup ATOM
*
* \brief Fills unused internal floating-point bits
*
* \type_id
* \param[in] pad Padding type
*
* \return \herr_t
*
* \details H5Tset_inpad() If any internal bits of a floating point-type are
* unused (that is, those significant bits which are not part of the
* sign, exponent, or mantissa), then H5Tset_inpad() will be filled
* according to the value of the padding value property inpad. Valid
* padding types are:
* \snippet this H5T_pad_t_snip
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_inpad(hid_t type_id, H5T_pad_t pad);
/**
* \ingroup ATOM
*
* \brief Sets character set to be used in a string or character datatype
*
* \type_id
* \param[in] cset Character set type
*
* \return \herr_t
*
* \details H5Tset_cset() sets the character set to be used in a dataset with
* a string or character datatype.
*
* Valid values for cset include the following:
* \csets
* For example, if the character set for the datatype \p type_id is set
* to #H5T_CSET_UTF8, string or character data of datatype dtype_id
* will be encoded using the UTF-8 Unicode character set.
*
* ASCII and UTF-8 Unicode are the only currently supported character
* encodings. Extended ASCII encodings (for example, ISO 8859) are
* not supported. This encoding policy is not enforced by the HDF5
* library. Using encodings other than ASCII and UTF-8 can lead to
* compatibility and usability problems.
*
* Note that H5Tset_cset() sets the character set for a character or
* string datatype while H5Pset_char_encoding() sets the character
* set used for an HDF5 link or attribute name.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_cset(hid_t type_id, H5T_cset_t cset);
/**
* \ingroup ATOM
*
* \brief Defines the type of padding used for character strings
*
* \type_id
* \param[in] strpad String padding type
*
* \return \herr_t
*
* \details H5Tset_strpad() defines the type of padding used for a string
* datatype.
*
* The method used to store character strings differs with the
* programming language. C usually null terminates strings while
* Fortran left-justifies and space-pads strings.
*
* Valid values of \p strpad are as follows:
* \str_pad_type
* When converting from a longer string to a shorter string, the
* behavior is as follows. If the shorter string is #H5T_STR_NULLPAD
* or #H5T_STR_SPACEPAD, then the string is simply truncated. If
* the short string is #H5T_STR_NULLTERM, it is truncated and a null
* terminator is appended.
*
* When converting from a shorter string to a longer string, the
* longer string is padded on the end by appending nulls or spaces.
*
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tset_strpad(hid_t type_id, H5T_str_t strpad);
/**
* --------------------------------------------------------------------------
* \ingroup CONV
*
* \brief Converts data from one specified datatype to another
*
* \type_id{src_id} of source datatype
* \type_id{dst_id} of destination datatype
* \param[in] nelmts Size of array \p buf
* \param[in,out] buf Array containing pre- and post-conversion values
* \param[in] background Optional background buffer
* \dxpl_id{plist_id}
*
* \return \herr_t
*
* \details H5Tconvert() converts \p nelmts elements from a source datatype,
* specified by \p src_id, to a destination datatype, \p dst_id. The
* source elements are packed in \p buf and on return the destination
* elements will be packed in \p buf. That is, the conversion is
* performed in place.
*
* The optional background buffer is for use with compound datatypes.
* It is an array of \p nelmts values for the destination datatype
* which can then be merged with the converted values to recreate the
* compound datatype. For instance, background might be an array of
* structs with the \c a and \c b fields already initialized and the
* conversion of buf supplies the \c c and \c d field values.
*
* The parameter \p plist_id contains the dataset transfer property list
* identifier which is passed to the conversion functions. As of
* Release 1.2, this parameter is only used to pass along the
* variable-length datatype custom allocation information.
*
* \note H5Tconvert() will not resize the buffer \p buf; it must be large
* enough to hold the larger of the input and output data.
*
* \version 1.6.3 \p nelmts parameter type changed to size_t.
* \version 1.4.0 \p nelmts parameter type changed to hsize_t.
*
*/
H5_DLL herr_t H5Tconvert(hid_t src_id, hid_t dst_id, size_t nelmts, void *buf, void *background,
hid_t plist_id);
/**
* \ingroup VLEN
*
* \brief Reclaims the variable length (VL) datatype memory buffers
*
* \type_id
* \space_id
* \dxpl_id{plist_id} used to create the buffer
* \param[in] buf Pointer to the buffer to be reclaimed
*
* \return \herr_t
*
* \details H5Treclaim() reclaims memory buffers created to store VL datatypes.
* It only frees the variable length data in the selection defined in
* the dataspace specified by \p space_id. The dataset transfer
* property list \p plist_id is required to find the correct
* allocation and/or free methods for the variable-length data in the
* buffer.
*
* \since 1.12.0
*
*/
H5_DLL herr_t H5Treclaim(hid_t type_id, hid_t space_id, hid_t plist_id, void *buf);
/* Symbols defined for compatibility with previous versions of the HDF5 API.
*
* Use of these symbols is deprecated.
*/
/* API Wrappers for async routines */
/* (Must be defined _after_ the function prototype) */
/* (And must only defined when included in application code, not the library) */
#ifndef H5T_MODULE
#define H5Tcommit_async(...) H5Tcommit_async(__FILE__, __func__, __LINE__, __VA_ARGS__)
#define H5Topen_async(...) H5Topen_async(__FILE__, __func__, __LINE__, __VA_ARGS__)
#define H5Tclose_async(...) H5Tclose_async(__FILE__, __func__, __LINE__, __VA_ARGS__)
/* Define "wrapper" versions of function calls, to allow compile-time values to
* be passed in by language wrapper or library layer on top of HDF5. */
#define H5Tcommit_async_wrap H5_NO_EXPAND(H5Tcommit_async)
#define H5Topen_async_wrap H5_NO_EXPAND(H5Topen_async)
#define H5Tclose_async_wrap H5_NO_EXPAND(H5Tclose_async)
#endif /* H5T_MODULE */
#ifndef H5_NO_DEPRECATED_SYMBOLS
/* Macros */
/* Typedefs */
/* Function prototypes */
/**
* \ingroup H5T
*
* \brief Commits a transient datatype to a file, creating a new named datatype
*
* \fg_loc_id
* \param[in] name Name given to committed datatype
* \param[in] type_id Identifier of datatype to be committed
*
* \return \herr_t
*
* \deprecated This function has been renamed from H5Tcommit() and is
* deprecated in favor of the macro #H5Tcommit or the function
* H5Tcommit2().
*
* \details H5Tcommit1() commits the transient datatype (not immutable) to
* a file, turning it into a named datatype.
*
* The datatype \p dtype_id is committed as a named datatype at the
* location \p loc_id, which is either a file or group identifier,
* with the name \p name.
*
* \p name can be a relative path based at \p loc_id or an absolute
* path from the root of the file. Use of this function requires
* that any intermediate groups specified in the path already exist.
*
* As is the case for any object in a group, the length of the name
* of a named datatype is not limited.
*
* See H5Tcommit_anon() for a discussion of the differences between
* H5Tcommit() and H5Tcommit_anon().
*
* This function will not accept a datatype that cannot actually
* hold data. This currently includes compound datatypes with no
* fields and enumerated datatypes with no members.
*
* \version 1.8.7 Function modified in this release to reject datatypes that
* will not accommodate actual data, such as a compound datatype with
* no fields or an enumerated datatype with no members.
* \version 1.8.0 C function H5Tcommit() renamed to H5Tcommit1() and deprecated
* in this release.
* \since 1.2.0
*
*/
H5_DLL herr_t H5Tcommit1(hid_t loc_id, const char *name, hid_t type_id);
/**
* \ingroup H5T
*
* \brief Opens a named datatype
*
* \fg_loc_id
* \param[in] name A datatype name, defined within the specified file or group
*
* \return \herr_t
*
* \deprecated This function has been renamed from H5Topen() and is
* deprecated in favor of the macro #H5Topen or the function
* H5Topen2().
*
* \details H5Topen1() opens a named datatype at the location specified by
* \p loc_id and returns an identifier for the datatype. \p loc_id
* can be either a file or group identifier. The identifier should
* eventually be closed by calling H5Tclose() to release resources.
*
* \version 1.8.0 Function H5Topen() renamed to H5Topen1() and deprecated in
* this release.
*
* \since 1.2.0
*
*/
H5_DLL hid_t H5Topen1(hid_t loc_id, const char *name);
/**
* \ingroup ARRAY
*
* \brief Creates an array datatype object
*
* \param[in] base_id Datatype identifier for the array base datatype
* \param[in] ndims Rank of the array
* \param[in] dim Size of each array dimension
* \param[in] perm Dimension permutation (Currently not implemented.)
*
* \return \hid_t{array datatype}
*
* \deprecated This function has been renamed from H5Tarray_create() and is
* deprecated in favor of the macro #H5Tarray_create or the function
* H5Tarray_create2().
*
* \details H5Tarray_create1() creates a new array datatype object.\n\n
* \p base_id is the datatype of every element of the array, i.e.,
* of the number at each position in the array.
*
* \p rank is the number of dimensions and the size of each dimension
* is specified in the array dims. The value of rank is currently
* limited to #H5S_MAX_RANK and must be greater than 0 (zero). All
* dimension sizes specified in dims must be greater than 0 (zero).
*
* The array \p perm is designed to contain the dimension permutation,
* i.e. C versus FORTRAN array order. (The parameter perm is
* currently unused and is not yet implemented.)
*
* \version 1.8.0 Function H5Tarray_create() renamed to H5Tarray_create1()
* and deprecated in this release.
* \since 1.4.0
*
*/
H5_DLL hid_t H5Tarray_create1(hid_t base_id, int ndims, const hsize_t dim[/* ndims */],
const int perm[/* ndims */]);
/**
* \ingroup ARRAY
*
* \brief Retrieves sizes of array dimensions
*
* \type_id
* \param[out] dims Sizes of array dimensions
* \param[out] perm Dimension permutations (This parameter is not used.)
*
* \return Returns the non-negative number of dimensions of the array type
* if successful; otherwise, returns a negative value.
*
* \deprecated This function has been renamed from H5Tget_array_dims() and is
* deprecated in favor of the macro #H5Tget_array_dims or the
* function H5Tget_array_dims2().
*
* \details H5Tget_array_dims1() returns the sizes of the dimensions and
* the dimension permutations of the specified array datatype object.
*
* The sizes of the dimensions are returned in the array \p dims.
*
* \version 1.8.0 Function H5Tarray_create() renamed to H5Tarray_create1()
* and deprecated in this release.
* \since 1.2.0
*
*/
H5_DLL int H5Tget_array_dims1(hid_t type_id, hsize_t dims[], int perm[]);
#endif /* H5_NO_DEPRECATED_SYMBOLS */
#ifdef __cplusplus
}
#endif
#endif /* H5Tpublic_H */