/*========================================================================= Program: Visualization Toolkit Module: vtkTransform.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTransform * @brief describes linear transformations via a 4x4 matrix * * A vtkTransform can be used to describe the full range of linear (also * known as affine) coordinate transformations in three dimensions, * which are internally represented as a 4x4 homogeneous transformation * matrix. When you create a new vtkTransform, it is always initialized * to the identity transformation. *
The SetInput() method allows you to set another transform, * instead of the identity transform, to be the base transformation. * There is a pipeline mechanism to ensure that when the input is * modified, the current transformation will be updated accordingly. * This pipeline mechanism is also supported by the Concatenate() method. *
Most of the methods for manipulating this transformation, * e.g. Translate, Rotate, and Concatenate, can operate in either * PreMultiply (the default) or PostMultiply mode. In PreMultiply * mode, the translation, concatenation, etc. will occur before any * transformations which are represented by the current matrix. In * PostMultiply mode, the additional transformation will occur after * any transformations represented by the current matrix. *
This class performs all of its operations in a right handed
* coordinate system with right handed rotations. Some other graphics
* libraries use left handed coordinate systems and rotations.
* @sa
* vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
* vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
* vtkImageReslice
*/
#ifndef vtkTransform_h
#define vtkTransform_h
#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkLinearTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform
{
public:
static vtkTransform* New();
vtkTypeMacro(vtkTransform, vtkLinearTransform);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set the transformation to the identity transformation. If
* the transform has an Input, then the transformation will be
* reset so that it is the same as the Input.
*/
void Identity();
/**
* Invert the transformation. This will also set a flag so that
* the transformation will use the inverse of its Input, if an Input
* has been set.
*/
void Inverse() override;
//@{
/**
* Create a translation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
*/
void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); }
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }
//@}
//@{
/**
* Create a rotation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
* The angle is in degrees, and (x,y,z) specifies the axis that the
* rotation will be performed around.
*/
void RotateWXYZ(double angle, double x, double y, double z)
{
this->Concatenation->Rotate(angle, x, y, z);
}
void RotateWXYZ(double angle, const double axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
void RotateWXYZ(double angle, const float axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
//@}
//@{
/**
* Create a rotation matrix about the X, Y, or Z axis and concatenate
* it with the current transformation according to PreMultiply or
* PostMultiply semantics. The angle is expressed in degrees.
*/
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }
//@}
//@{
/**
* Create a scale matrix (i.e. set the diagonal elements to x, y, z)
* and concatenate it with the current transformation according to
* PreMultiply or PostMultiply semantics.
*/
void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); }
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }
//@}
//@{
/**
* Set the current matrix directly. Note: First, the current
* matrix is set to the identity, then the input matrix is concatenated.
*/
void SetMatrix(vtkMatrix4x4* matrix) { this->SetMatrix(*matrix->Element); }
void SetMatrix(const double elements[16])
{
this->Concatenation->Identity();
this->Concatenate(elements);
}
//@}
//@{
/**
* Concatenates the matrix with the current transformation according
* to PreMultiply or PostMultiply semantics.
*/
void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); }
void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }
//@}
/**
* Concatenate the specified transform with the current transformation
* according to PreMultiply or PostMultiply semantics.
* The concatenation is pipelined, meaning that if any of the
* transformations are changed, even after Concatenate() is called,
* those changes will be reflected when you call TransformPoint().
*/
void Concatenate(vtkLinearTransform* transform);
/**
* Sets the internal state of the transform to PreMultiply. All subsequent
* operations will occur before those already represented in the
* current transformation. In homogeneous matrix notation, M = M*A where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PreMultiply()
{
if (this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(1);
this->Modified();
}
/**
* Sets the internal state of the transform to PostMultiply. All subsequent
* operations will occur after those already represented in the
* current transformation. In homogeneous matrix notation, M = A*M where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PostMultiply()
{
if (!this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(0);
this->Modified();
}
/**
* Get the total number of transformations that are linked into this
* one via Concatenate() operations or via SetInput().
*/
int GetNumberOfConcatenatedTransforms()
{
return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1);
}
//@{
/**
* Get one of the concatenated transformations as a vtkAbstractTransform.
* These transformations are applied, in series, every time the
* transformation of a coordinate occurs. This method is provided
* to make it possible to decompose a transformation into its
* constituents, for example to save a transformation to a file.
*/
vtkLinearTransform* GetConcatenatedTransform(int i)
{
vtkAbstractTransform* t;
if (this->Input == nullptr)
{
t = this->Concatenation->GetTransform(i);
}
else if (i < this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i);
}
else if (i > this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i - 1);
}
else if (this->GetInverseFlag())
{
t = this->Input->GetInverse();
}
else
{
t = this->Input;
}
return static_cast