/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkQuadraticHexahedron * @brief cell represents a parabolic, 20-node isoparametric hexahedron * * vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 20-node isoparametric parabolic * hexahedron. The interpolation is the standard finite element, quadratic * isoparametric shape function. The cell includes a mid-edge node. The * ordering of the twenty points defining the cell is point ids (0-7,8-19) * where point ids 0-7 are the eight corner vertices of the cube; followed by * twelve midedge nodes (8-19). Note that these midedge nodes correspond lie * on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), * (7,4), (0,4), (1,5), (2,6), (3,7). * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge */ #ifndef vtkQuadraticHexahedron_h #define vtkQuadraticHexahedron_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuadraticQuad; class vtkHexahedron; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticHexahedron : public vtkNonLinearCell { public: static vtkQuadraticHexahedron* New(); vtkTypeMacro(vtkQuadraticHexahedron, vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_QUADRATIC_HEXAHEDRON; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 12; } int GetNumberOfFaces() override { return 6; } vtkCell* GetEdge(int) override; vtkCell* GetFace(int) override; //@} int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Clip this quadratic hexahedron using scalar value provided. Like * contouring, except that it cuts the hex to produce linear * tetrahedron. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; static void InterpolationFunctions(const double pcoords[3], double weights[20]); static void InterpolationDerivs(const double pcoords[3], double derivs[60]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[20]) override { vtkQuadraticHexahedron::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[60]) override { vtkQuadraticHexahedron::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId); static const vtkIdType* GetFaceArray(vtkIdType faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[60]); protected: vtkQuadraticHexahedron(); ~vtkQuadraticHexahedron() override; vtkQuadraticEdge* Edge; vtkQuadraticQuad* Face; vtkHexahedron* Hex; vtkPointData* PointData; vtkCellData* CellData; vtkDoubleArray* CellScalars; vtkDoubleArray* Scalars; void Subdivide( vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars); private: vtkQuadraticHexahedron(const vtkQuadraticHexahedron&) = delete; void operator=(const vtkQuadraticHexahedron&) = delete; }; #endif