/*========================================================================= Program: Visualization Toolkit Module: vtkPlane.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkPlane * @brief perform various plane computations * * vtkPlane provides methods for various plane computations. These include * projecting points onto a plane, evaluating the plane equation, and * returning plane normal. vtkPlane is a concrete implementation of the * abstract class vtkImplicitFunction. */ #ifndef vtkPlane_h #define vtkPlane_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkImplicitFunction.h" class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction { public: /** * Construct plane passing through origin and normal to z-axis. */ static vtkPlane* New(); vtkTypeMacro(vtkPlane, vtkImplicitFunction); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Evaluate plane equation for point x[3]. */ using vtkImplicitFunction::EvaluateFunction; void EvaluateFunction(vtkDataArray* input, vtkDataArray* output) override; double EvaluateFunction(double x[3]) override; //@} /** * Evaluate function gradient at point x[3]. */ void EvaluateGradient(double x[3], double g[3]) override; //@{ /** * Set/get plane normal. Plane is defined by point and normal. */ vtkSetVector3Macro(Normal, double); vtkGetVectorMacro(Normal, double, 3); //@} //@{ /** * Set/get point through which plane passes. Plane is defined by point * and normal. */ vtkSetVector3Macro(Origin, double); vtkGetVectorMacro(Origin, double, 3); //@} /** * Translate the plane in the direction of the normal by the * distance specified. Negative values move the plane in the * opposite direction. */ void Push(double distance); //@{ /** * Project a point x onto plane defined by origin and normal. The * projected point is returned in xproj. NOTE : normal assumed to * have magnitude 1. */ static void ProjectPoint( const double x[3], const double origin[3], const double normal[3], double xproj[3]); void ProjectPoint(const double x[3], double xproj[3]); //@} //@{ /** * Project a vector v onto plane defined by origin and normal. The * projected vector is returned in vproj. */ static void ProjectVector( const double v[3], const double origin[3], const double normal[3], double vproj[3]); void ProjectVector(const double v[3], double vproj[3]); //@} //@{ /** * Project a point x onto plane defined by origin and normal. The * projected point is returned in xproj. NOTE : normal does NOT have to * have magnitude 1. */ static void GeneralizedProjectPoint( const double x[3], const double origin[3], const double normal[3], double xproj[3]); void GeneralizedProjectPoint(const double x[3], double xproj[3]); //@} /** * Quick evaluation of plane equation n(x-origin)=0. */ static double Evaluate(double normal[3], double origin[3], double x[3]); //@{ /** * Return the distance of a point x to a plane defined by n(x-p0) = 0. The * normal n[3] must be magnitude=1. */ static double DistanceToPlane(double x[3], double n[3], double p0[3]); double DistanceToPlane(double x[3]); //@} //@{ /** * Given a line defined by the two points p1,p2; and a plane defined by the * normal n and point p0, compute an intersection. The parametric * coordinate along the line is returned in t, and the coordinates of * intersection are returned in x. A zero is returned if the plane and line * do not intersect between (0<=t<=1). If the plane and line are parallel, * zero is returned and t is set to VTK_LARGE_DOUBLE. */ static int IntersectWithLine( const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3]); int IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3]); //@} //@{ /** * Given two planes, one infinite and one finite, defined by the normal n * and point o (infinite plane), and the second finite plane1 defined by * the three points (pOrigin,px,py), compute a line of intersection (if * any). The line of intersection is defined by the return values * (x0,x1). If there is no intersection, then zero is returned; otherwise * non-zero. There are two variants of this method. The static function * operates on the supplied function parameters; the non-static operates on * this instance of vtkPlane (and its associated origin and normal). */ static int IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]); int IntersectWithFinitePlane( double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]); //@} protected: vtkPlane(); ~vtkPlane() override {} double Normal[3]; double Origin[3]; private: vtkPlane(const vtkPlane&) = delete; void operator=(const vtkPlane&) = delete; }; // Generally the normal should be normalized inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3]) { return normal[0] * (x[0] - origin[0]) + normal[1] * (x[1] - origin[1]) + normal[2] * (x[2] - origin[2]); } // Assumes normal is normalized inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3]) { #define vtkPlaneAbs(x) ((x) < 0 ? -(x) : (x)) return (vtkPlaneAbs(n[0] * (x[0] - p0[0]) + n[1] * (x[1] - p0[1]) + n[2] * (x[2] - p0[2]))); } #endif