/*========================================================================= Program: Visualization Toolkit Module: vtkPerspectiveTransform.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkPerspectiveTransform * @brief describes a 4x4 matrix transformation * * A vtkPerspectiveTransform can be used to describe the full range of * homogeneous transformations. It was designed in particular * to describe a camera-view of a scene. *
The order in which you set up the display coordinates (via * AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(), * Frustum(), or Ortho()) and the camera view (via SetupCamera()) are * important. If the transform is in PreMultiply mode, which is the * default, set the Viewport and ZBuffer first, then the projection, and * finally the camera view. Once the view is set up, the Translate * and Rotate methods can be used to move the camera around in world * coordinates. If the Oblique() or Stereo() methods are used, they * should be called just before SetupCamera(). *
In PostMultiply mode, you must perform all transformations * in the opposite order. This is necessary, for example, if you * already have a perspective transformation set up but must adjust * the viewport. Another example is if you have a view transformation, * and wish to perform translations and rotations in the camera's * coordinate system rather than in world coordinates. *
The SetInput and Concatenate methods can be used to create
* a transformation pipeline with vtkPerspectiveTransform. See vtkTransform
* for more information on the transformation pipeline.
* @sa
* vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera
*/
#ifndef vtkPerspectiveTransform_h
#define vtkPerspectiveTransform_h
#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkHomogeneousTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTKCOMMONTRANSFORMS_EXPORT vtkPerspectiveTransform : public vtkHomogeneousTransform
{
public:
static vtkPerspectiveTransform* New();
vtkTypeMacro(vtkPerspectiveTransform, vtkHomogeneousTransform);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set this transformation to the identity transformation. If
* the transform has an Input, then the transformation will be
* reset so that it is the same as the Input.
*/
void Identity()
{
this->Concatenation->Identity();
this->Modified();
}
/**
* Invert the transformation. This will also set a flag so that
* the transformation will use the inverse of its Input, if an Input
* has been set.
*/
void Inverse() override
{
this->Concatenation->Inverse();
this->Modified();
}
/**
* Perform an adjustment to the viewport coordinates. By default Ortho,
* Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]).
* In PreMultiply mode, you call this method before calling Ortho, Frustum,
* or Perspective. In PostMultiply mode you can call it after. Note
* that if you must apply both AdjustZBuffer and AdjustViewport, it
* makes no difference which order you apply them in.
*/
void AdjustViewport(double oldXMin, double oldXMax, double oldYMin, double oldYMax,
double newXMin, double newXMax, double newYMin, double newYMax);
/**
* Perform an adjustment to the Z-Buffer range that the near and far
* clipping planes map to. By default Ortho, Frustum, and Perspective
* map the near clipping plane to -1 and the far clipping plane to +1.
* In PreMultiply mode, you call this method before calling Ortho, Frustum,
* or Perspective. In PostMultiply mode you can call it after.
*/
void AdjustZBuffer(double oldNearZ, double oldFarZ, double newNearZ, double newFarZ);
/**
* Create an orthogonal projection matrix and concatenate it by the
* current transformation. The matrix maps [xmin,xmax], [ymin,ymax],
* [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1].
*/
void Ortho(double xmin, double xmax, double ymin, double ymax, double znear, double zfar);
/**
* Create an perspective projection matrix and concatenate it by the
* current transformation. The matrix maps a frustum with a back
* plane at -zfar and a front plane at -znear with extent
* [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1].
*/
void Frustum(double xmin, double xmax, double ymin, double ymax, double znear, double zfar);
/**
* Create a perspective projection matrix by specifying the view angle
* (this angle is in the y direction), the aspect ratio, and the near
* and far clipping range. The projection matrix is concatenated
* with the current transformation. This method works via Frustum.
*/
void Perspective(double angle, double aspect, double znear, double zfar);
/**
* Create a shear transformation about a plane at distance z from
* the camera. The values dxdz (i.e. dx/dz) and dydz specify the
* amount of shear in the x and y directions. The 'zplane' specifies
* the distance from the camera to the plane at which the shear
* causes zero displacement. Generally you want this plane to be the
* focal plane.
* This transformation can be used in combination with Ortho to create
* an oblique projection. It can also be used in combination with
* Perspective to provide correct stereo views when the eye is at
* arbitrary but known positions relative to the center of a flat
* viewing screen.
*/
void Shear(double dxdz, double dydz, double zplane);
/**
* Create a stereo shear matrix and concatenate it with the
* current transformation. This can be applied in conjunction with either a
* perspective transformation (via Frustum or Projection) or an
* orthographic projection. You must specify the distance from
* the camera plane to the focal plane, and the angle between
* the distance vector and the eye. The angle should be negative
* for the left eye, and positive for the right. This method
* works via Oblique.
*/
void Stereo(double angle, double focaldistance);
/**
* Set a view transformation matrix for the camera (this matrix does
* not contain any perspective) and concatenate it with the current
* transformation.
*/
void SetupCamera(const double position[3], const double focalpoint[3], const double viewup[3]);
void SetupCamera(double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0,
double vup1, double vup2);
//@{
/**
* Create a translation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
*/
void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); }
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }
//@}
//@{
/**
* Create a rotation matrix and concatenate it with the current
* transformation according to PreMultiply or PostMultiply semantics.
* The angle is in degrees, and (x,y,z) specifies the axis that the
* rotation will be performed around.
*/
void RotateWXYZ(double angle, double x, double y, double z)
{
this->Concatenation->Rotate(angle, x, y, z);
}
void RotateWXYZ(double angle, const double axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
void RotateWXYZ(double angle, const float axis[3])
{
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]);
}
//@}
//@{
/**
* Create a rotation matrix about the X, Y, or Z axis and concatenate
* it with the current transformation according to PreMultiply or
* PostMultiply semantics. The angle is expressed in degrees.
*/
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }
//@}
//@{
/**
* Create a scale matrix (i.e. set the diagonal elements to x, y, z)
* and concatenate it with the current transformation according to
* PreMultiply or PostMultiply semantics.
*/
void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); }
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }
//@}
//@{
/**
* Set the current matrix directly. This actually calls Identity(),
* followed by Concatenate(matrix).
*/
void SetMatrix(vtkMatrix4x4* matrix) { this->SetMatrix(*matrix->Element); }
void SetMatrix(const double elements[16])
{
this->Identity();
this->Concatenate(elements);
}
//@}
//@{
/**
* Concatenates the matrix with the current transformation according
* to PreMultiply or PostMultiply semantics.
*/
void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); }
void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }
//@}
/**
* Concatenate the specified transform with the current transformation
* according to PreMultiply or PostMultiply semantics.
* The concatenation is pipelined, meaning that if any of the
* transformations are changed, even after Concatenate() is called,
* those changes will be reflected when you call TransformPoint().
*/
void Concatenate(vtkHomogeneousTransform* transform);
/**
* Sets the internal state of the transform to PreMultiply. All subsequent
* operations will occur before those already represented in the
* current transformation. In homogeneous matrix notation, M = M*A where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PreMultiply()
{
if (this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(1);
this->Modified();
}
/**
* Sets the internal state of the transform to PostMultiply. All subsequent
* operations will occur after those already represented in the
* current transformation. In homogeneous matrix notation, M = A*M where
* M is the current transformation matrix and A is the applied matrix.
* The default is PreMultiply.
*/
void PostMultiply()
{
if (!this->Concatenation->GetPreMultiplyFlag())
{
return;
}
this->Concatenation->SetPreMultiplyFlag(0);
this->Modified();
}
/**
* Get the total number of transformations that are linked into this
* one via Concatenate() operations or via SetInput().
*/
int GetNumberOfConcatenatedTransforms()
{
return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1);
}
//@{
/**
* Get one of the concatenated transformations as a vtkAbstractTransform.
* These transformations are applied, in series, every time the
* transformation of a coordinate occurs. This method is provided
* to make it possible to decompose a transformation into its
* constituents, for example to save a transformation to a file.
*/
vtkHomogeneousTransform* GetConcatenatedTransform(int i)
{
vtkAbstractTransform* t;
if (this->Input == nullptr)
{
t = this->Concatenation->GetTransform(i);
}
else if (i < this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i);
}
else if (i > this->Concatenation->GetNumberOfPreTransforms())
{
t = this->Concatenation->GetTransform(i - 1);
}
else if (this->GetInverseFlag())
{
t = this->Input->GetInverse();
}
else
{
t = this->Input;
}
return static_cast