/*========================================================================= Program: Visualization Toolkit Module: vtkParametricRoman.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricRoman * @brief Generate Steiner's Roman Surface. * * vtkParametricRoman generates Steiner's Roman Surface. * * For further information about this surface, please consult the * technical description "Parametric surfaces" in http://www.vtk.org/publications * in the "VTK Technical Documents" section in the VTk.org web pages. * * @par Thanks: * Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the * class. * */ #ifndef vtkParametricRoman_h #define vtkParametricRoman_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricRoman : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricRoman, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } /** * Construct Steiner's Roman Surface with the following parameters: * MinimumU = 0, MaximumU = Pi, * MinimumV = 0, MaximumV = Pi, * JoinU = 1, JoinV = 1, * TwistU = 1, TwistV = 0; * ClockwiseOrdering = 0, * DerivativesAvailable = 1, * Radius = 1 */ static vtkParametricRoman* New(); //@{ /** * Set/Get the radius. Default is 1. */ vtkSetMacro(Radius, double); vtkGetMacro(Radius, double); //@} /** * Steiner's Roman Surface * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = Du X Dv\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the Cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricRoman(); ~vtkParametricRoman() override; // Variables double Radius; private: vtkParametricRoman(const vtkParametricRoman&) = delete; void operator=(const vtkParametricRoman&) = delete; }; #endif