/*========================================================================= Program: Visualization Toolkit Module: vtkParametricPluckerConoid.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricPluckerConoid * @brief Generate Plucker's conoid surface. * * vtkParametricPluckerConoid generates Plucker's conoid surface parametrically. * Plucker's conoid is a ruled surface, named after Julius Plucker. It is * possible to set the number of folds in this class via the parameter 'N'. * * For more information, see the Wikipedia page on * Plucker's Conoid. * @warning * I haven't done any special checking on the number of folds parameter, N. * @par Thanks: * Tim Meehan */ #ifndef vtkParametricPluckerConoid_h #define vtkParametricPluckerConoid_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricPluckerConoid : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricPluckerConoid, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * This is the number of folds in the conoid. */ vtkGetMacro(N, int); vtkSetMacro(N, int); //@} /** * Construct Plucker's conoid surface with the following parameters: * (MinimumU, MaximumU) = (0., 3.), * (MinimumV, MaximumV) = (0., 2*pi), * JoinU = 0, JoinV = 0, * TwistU = 0, TwistV = 0; * ClockwiseOrdering = 0, * DerivativesAvailable = 1, */ static vtkParametricPluckerConoid* New(); /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } /** * Plucker's conoid surface. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = D_u\vec{f} \times D_v\vec{f}\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * This method simply returns 0. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricPluckerConoid(); ~vtkParametricPluckerConoid() override; // Variables int N; private: vtkParametricPluckerConoid(const vtkParametricPluckerConoid&) = delete; void operator=(const vtkParametricPluckerConoid&) = delete; }; #endif