/*========================================================================= Program: Visualization Toolkit Module: vtkParametricKuen.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricKuen * @brief Generate Kuens' surface. * * vtkParametricKuen generates Kuens' surface. This surface has a constant * negative gaussian curvature. For more information about this surface, see * Dr. O'Niell's page at the * UCLA Mathematics Department. * @par Thanks: * Tim Meehan */ #ifndef vtkParametricKuen_h #define vtkParametricKuen_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkMath.h" // for vtkMath::Pi() #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricKuen : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricKuen, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Construct Kuen's surface with the following parameters: * (MinimumU, MaximumU) = (-4.5, 4.5), * (MinimumV, MaximumV) = (DeltaV0, pi), * JoinU = 0, JoinV = 0, * TwistU = 0, TwistV = 0; * ClockwiseOrdering = 0, * DerivativesAvailable = 1, */ static vtkParametricKuen* New(); /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } //@{ /** * Set/Get the value to use when V == 0. * Default is 0.05, giving the best appearance with the default settings. * Setting it to a value less than 0.05 extrapolates the surface * towards a pole in the -z direction. * Setting it to 0 retains the pole whose z-value is -inf. */ vtkSetMacro(DeltaV0, double); vtkGetMacro(DeltaV0, double); //@} /** * Kuen's surface. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = D_u\vec{f} \times D_v\vec{f}\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * This method simply returns 0. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricKuen(); ~vtkParametricKuen() override; private: vtkParametricKuen(const vtkParametricKuen&) = delete; void operator=(const vtkParametricKuen&) = delete; double DeltaV0; }; #endif