/*========================================================================= Program: Visualization Toolkit Module: vtkParametricBohemianDome.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricBohemianDome * @brief Generate a Bohemian dome. * * vtkParametricBohemianDome generates a parametric Bohemian dome. The Bohemian * dome is a quartic surface, and is described in much better detail at * HMC * page. * @warning * I haven't set any restrictions on the A, B, or C values. * @par Thanks: * Tim Meehan */ #ifndef vtkParametricBohemianDome_h #define vtkParametricBohemianDome_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricBohemianDome : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricBohemianDome, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Construct a Bohemian dome surface with the following parameters: */ vtkGetMacro(A, double); vtkSetMacro(A, double); //@} vtkGetMacro(B, double); vtkSetMacro(B, double); vtkGetMacro(C, double); vtkSetMacro(C, double); // (MinimumU, MaximumU) = (-pi, pi), // (MinimumV, MaximumV) = (-pi, pi), // JoinU = 1, JoinV = 1, // TwistU = 0, TwistV = 0; // ClockwiseOrdering = 0, // DerivativesAvailable = 1, static vtkParametricBohemianDome* New(); /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } /** * BohemianDome surface. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), D_u\vec{f} = (dx/du, dy/du, dz/du), D_v\vec{f} = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = D_u\vec{f} \times D_v\vec{f}\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * This method simply returns 0. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricBohemianDome(); ~vtkParametricBohemianDome() override; // Variables double A; double B; double C; private: vtkParametricBohemianDome(const vtkParametricBohemianDome&) = delete; void operator=(const vtkParametricBohemianDome&) = delete; }; #endif