/*========================================================================= Program: Visualization Toolkit Module: vtkMatrix3x3.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkMatrix3x3 * @brief represent and manipulate 3x3 transformation matrices * * vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices. * Specifically, it is designed to work on 3x3 transformation matrices * found in 2D rendering using homogeneous coordinates [x y w]. * * @sa * vtkTransform2D */ #ifndef vtkMatrix3x3_h #define vtkMatrix3x3_h #include "vtkCommonMathModule.h" // For export macro #include "vtkObject.h" class VTKCOMMONMATH_EXPORT vtkMatrix3x3 : public vtkObject { // Some of the methods in here have a corresponding static (class) // method taking a pointer to 9 doubles that constitutes a user // supplied matrix. This allows C++ clients to allocate double arrays // on the stack and manipulate them using vtkMatrix3x3 methods. // This is an alternative to allowing vtkMatrix3x3 instances to be // created on the stack (which is frowned upon) or doing lots of // temporary heap allocation within vtkTransform2D methods, // which is inefficient. public: /** * Construct a 3x3 identity matrix. */ static vtkMatrix3x3* New(); vtkTypeMacro(vtkMatrix3x3, vtkObject); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Set the elements of the matrix to the same values as the elements * of the source Matrix. */ void DeepCopy(vtkMatrix3x3* source) { vtkMatrix3x3::DeepCopy(*this->Element, source); this->Modified(); } static void DeepCopy(double elements[9], vtkMatrix3x3* source) { vtkMatrix3x3::DeepCopy(elements, *source->Element); } static void DeepCopy(double elements[9], const double newElements[9]); /** * Non-static member function. Assigns *from* elements array */ void DeepCopy(const double elements[9]) { this->DeepCopy(*this->Element, elements); this->Modified(); } /** * Set all of the elements to zero. */ void Zero() { vtkMatrix3x3::Zero(*this->Element); this->Modified(); } static void Zero(double elements[9]); /** * Set equal to Identity matrix */ void Identity() { vtkMatrix3x3::Identity(*this->Element); this->Modified(); } static void Identity(double elements[9]); /** * Matrix Inversion (adapted from Richard Carling in "Graphics Gems," * Academic Press, 1990). */ static void Invert(vtkMatrix3x3* in, vtkMatrix3x3* out) { vtkMatrix3x3::Invert(*in->Element, *out->Element); out->Modified(); } void Invert() { vtkMatrix3x3::Invert(this, this); } static void Invert(const double inElements[9], double outElements[9]); /** * Transpose the matrix and put it into out. */ static void Transpose(vtkMatrix3x3* in, vtkMatrix3x3* out) { vtkMatrix3x3::Transpose(*in->Element, *out->Element); out->Modified(); } void Transpose() { vtkMatrix3x3::Transpose(this, this); } static void Transpose(const double inElements[9], double outElements[9]); /** * Multiply a homogeneous coordinate by this matrix, i.e. out = A*in. * The in[3] and out[3] can be the same array. */ void MultiplyPoint(const float in[3], float out[3]) { vtkMatrix3x3::MultiplyPoint(*this->Element, in, out); } void MultiplyPoint(const double in[3], double out[3]) { vtkMatrix3x3::MultiplyPoint(*this->Element, in, out); } static void MultiplyPoint(const double elements[9], const float in[3], float out[3]); static void MultiplyPoint(const double elements[9], const double in[3], double out[3]); /** * Multiplies matrices a and b and stores the result in c (c=a*b). */ static void Multiply3x3(vtkMatrix3x3* a, vtkMatrix3x3* b, vtkMatrix3x3* c) { vtkMatrix3x3::Multiply3x3(*a->Element, *b->Element, *c->Element); } static void Multiply3x3(const double a[9], const double b[9], double c[9]); /** * Compute adjoint of the matrix and put it into out. */ void Adjoint(vtkMatrix3x3* in, vtkMatrix3x3* out) { vtkMatrix3x3::Adjoint(*in->Element, *out->Element); } static void Adjoint(const double inElements[9], double outElements[9]); /** * Compute the determinant of the matrix and return it. */ double Determinant() { return vtkMatrix3x3::Determinant(*this->Element); } static double Determinant(const double elements[9]); /** * Sets the element i,j in the matrix. */ void SetElement(int i, int j, double value); /** * Returns the element i,j from the matrix. */ double GetElement(int i, int j) const { return this->Element[i][j]; } // Descption: // Returns true if this matrix is equal to the identity matrix. bool IsIdentity(); /** * Return a pointer to the first element of the matrix (double[9]). */ double* GetData() { return *this->Element; } /** * Return a pointer to the first element of the matrix (double[9]). */ const double* GetData() const { return *this->Element; } protected: vtkMatrix3x3(); ~vtkMatrix3x3() override; double Element[3][3]; // The elements of the 3x3 matrix private: vtkMatrix3x3(const vtkMatrix3x3&) = delete; void operator=(const vtkMatrix3x3&) = delete; }; inline void vtkMatrix3x3::SetElement(int i, int j, double value) { if (this->Element[i][j] != value) { this->Element[i][j] = value; this->Modified(); } } inline bool vtkMatrix3x3::IsIdentity() { double* M = *this->Element; if (M[0] == 1.0 && M[4] == 1.0 && M[8] == 1.0 && M[1] == 0.0 && M[2] == 0.0 && M[3] == 0.0 && M[5] == 0.0 && M[6] == 0.0 && M[7] == 0.0) { return true; } else { return false; } } #endif