/*========================================================================= Program: Visualization Toolkit Module: vtkFlyingEdges2D.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkFlyingEdges2D * @brief generate isoline(s) from a structured points (image) dataset * * vtkFlyingEdges2D is a reference implementation of the 2D version of the * flying edges algorithm. It is designed to be highly scalable (i.e., * parallelizable) for large data. It implements certain performance * optimizations including computational trimming to rapidly eliminate * processing of data regions, packed bit representation of case table * values, single edge intersection, elimination of point merging, and * elimination of any reallocs (due to dynamic data insertion). Note that * computational trimming is a method to reduce total computational cost in * which partial computational results can be used to eliminate future * computations. * * This is a four-pass algorithm. The first pass processes all x-edges and * builds x-edge case values (which, when the two x-edges defining a pixel * are combined, are equivalent to vertex-based case table except edge-based * approaches are separable to parallel computing). Next x-pixel rows are * processed to gather information from y-edges (basically to count the * number of edge intersections and lines generated). In the third pass a * prefix sum is used to count and allocate memory for the output * primitives. Finally in the fourth pass output primitives are generated into * pre-allocated arrays. This implementation uses pixel cell axes (a x-y dyad * located at the pixel origin) to ensure that each edge is intersected at * most one time. * * See the paper "Flying Edges: A High-Performance Scalable Isocontouring * Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL. * * @warning * This filter is specialized to 2D images. This implementation can produce * degenerate line segments (i.e., zero-length line segments). * * @warning * If you are interested in extracting segmented regions from a label mask, * consider using vtkDiscreteFlyingEdges2D. * * @warning * This class has been threaded with vtkSMPTools. Using TBB or other * non-sequential type (set in the CMake variable * VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly. * * @sa * vtkFlyingEdges3D vtkContourFilter vtkSynchronizedTemplates2D * vtkMarchingSquares vtkDiscreteFlyingEdges2D */ #ifndef vtkFlyingEdges2D_h #define vtkFlyingEdges2D_h #include "vtkContourValues.h" // Needed for direct access to ContourValues #include "vtkFiltersCoreModule.h" // For export macro #include "vtkPolyDataAlgorithm.h" class vtkImageData; class VTKFILTERSCORE_EXPORT vtkFlyingEdges2D : public vtkPolyDataAlgorithm { public: static vtkFlyingEdges2D* New(); vtkTypeMacro(vtkFlyingEdges2D, vtkPolyDataAlgorithm); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Because we delegate to vtkContourValues. */ vtkMTimeType GetMTime() override; /** * Set a particular contour value at contour number i. The index i ranges * between 0<=iContourValues->SetValue(i, value); } /** * Get the ith contour value. */ double GetValue(int i) { return this->ContourValues->GetValue(i); } /** * Get a pointer to an array of contour values. There will be * GetNumberOfContours() values in the list. */ double* GetValues() { return this->ContourValues->GetValues(); } /** * Fill a supplied list with contour values. There will be * GetNumberOfContours() values in the list. Make sure you allocate * enough memory to hold the list. */ void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); } /** * Set the number of contours to place into the list. You only really * need to use this method to reduce list size. The method SetValue() * will automatically increase list size as needed. */ void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); } /** * Get the number of contours in the list of contour values. */ vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); } /** * Generate numContours equally spaced contour values between specified * range. Contour values will include min/max range values. */ void GenerateValues(int numContours, double range[2]) { this->ContourValues->GenerateValues(numContours, range); } /** * Generate numContours equally spaced contour values between specified * range. Contour values will include min/max range values. */ void GenerateValues(int numContours, double rangeStart, double rangeEnd) { this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd); } //@{ /** * Option to set the point scalars of the output. The scalars will be the * iso value of course. By default this flag is on. */ vtkSetMacro(ComputeScalars, vtkTypeBool); vtkGetMacro(ComputeScalars, vtkTypeBool); vtkBooleanMacro(ComputeScalars, vtkTypeBool); //@} //@{ /** * Set/get which component of the scalar array to contour on; defaults to 0. */ vtkSetMacro(ArrayComponent, int); vtkGetMacro(ArrayComponent, int); //@} protected: vtkFlyingEdges2D(); ~vtkFlyingEdges2D() override; int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override; int FillInputPortInformation(int port, vtkInformation* info) override; vtkContourValues* ContourValues; vtkTypeBool ComputeScalars; int ArrayComponent; private: vtkFlyingEdges2D(const vtkFlyingEdges2D&) = delete; void operator=(const vtkFlyingEdges2D&) = delete; }; #endif