/*========================================================================= Program: Visualization Toolkit Module: vtkBiQuadraticQuadraticWedge.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkBiQuadraticQuadraticWedge * @brief cell represents a parabolic, 18-node isoparametric wedge * * vtkBiQuadraticQuadraticWedge is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 18-node isoparametric biquadratic * wedge. The interpolation is the standard finite element, * biquadratic-quadratic isoparametric shape function plus the linear functions. * The cell includes a mid-edge node. The * ordering of the 18 points defining the cell is point ids (0-5,6-15, 16-18) * where point ids 0-5 are the six corner vertices of the wedge; followed by * nine midedge nodes (6-15) and 3 center-face nodes. Note that these midedge * nodes correspond lie * on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3), * (1,4), (2,5), and the center-face nodes are laying in quads 16-(0,1,4,3), * 17-(1,2,5,4) and (2,0,3,5). * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid * * @par Thanks: * Thanks to Soeren Gebbert who developed this class and * integrated it into VTK 5.0. */ #ifndef vtkBiQuadraticQuadraticWedge_h #define vtkBiQuadraticQuadraticWedge_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkBiQuadraticQuad; class vtkQuadraticTriangle; class vtkWedge; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticWedge : public vtkNonLinearCell { public: static vtkBiQuadraticQuadraticWedge* New(); vtkTypeMacro(vtkBiQuadraticQuadraticWedge, vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_BIQUADRATIC_QUADRATIC_WEDGE; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 9; } int GetNumberOfFaces() override { return 5; } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int faceId) override; //@} int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double* weights) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Clip this quadratic Wedge using scalar value provided. Like * contouring, except that it cuts the hex to produce linear * tetrahedron. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Return the center of the quadratic wedge in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; static void InterpolationFunctions(const double pcoords[3], double weights[15]); static void InterpolationDerivs(const double pcoords[3], double derivs[45]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[15]) override { vtkBiQuadraticQuadraticWedge::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[45]) override { vtkBiQuadraticQuadraticWedge::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId); static const vtkIdType* GetFaceArray(vtkIdType faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[45]); protected: vtkBiQuadraticQuadraticWedge(); ~vtkBiQuadraticQuadraticWedge() override; vtkQuadraticEdge* Edge; vtkQuadraticTriangle* TriangleFace; vtkBiQuadraticQuad* Face; vtkWedge* Wedge; vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping private: vtkBiQuadraticQuadraticWedge(const vtkBiQuadraticQuadraticWedge&) = delete; void operator=(const vtkBiQuadraticQuadraticWedge&) = delete; }; //---------------------------------------------------------------------------- // Return the center of the quadratic wedge in parametric coordinates. inline int vtkBiQuadraticQuadraticWedge::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 1. / 3; pcoords[2] = 0.5; return 0; } #endif