/*========================================================================= Program: Visualization Toolkit Module: vtkWedge.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkWedge * @brief a 3D cell that represents a linear wedge * * vtkWedge is a concrete implementation of vtkCell to represent a linear 3D * wedge. A wedge consists of two triangular and three quadrilateral faces * and is defined by the six points (0-5). vtkWedge uses the standard * isoparametric shape functions for a linear wedge. The wedge is defined * by the six points (0-5) where (0,1,2) is the base of the wedge which, * using the right hand rule, forms a triangle whose normal points outward * (away from the triangular face (3,4,5)). * * @sa * vtkConvexPointSet vtkHexahedron vtkPyramid vtkTetra vtkVoxel */ #ifndef vtkWedge_h #define vtkWedge_h #include "vtkCell3D.h" #include "vtkCommonDataModelModule.h" // For export macro class vtkLine; class vtkTriangle; class vtkQuad; class vtkUnstructuredGrid; class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkWedge : public vtkCell3D { public: static vtkWedge* New(); vtkTypeMacro(vtkWedge, vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * See vtkCell3D API for description of these methods. */ void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override; // @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override); vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override; // @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override); void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override; vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override; vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override; vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override; vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override; bool GetCentroid(double centroid[3]) const override; bool IsInsideOut() override; //@} /** * static constexpr handle on the number of points. */ static constexpr vtkIdType NumberOfPoints = 6; /** * static contexpr handle on the number of faces. */ static constexpr vtkIdType NumberOfEdges = 9; /** * static contexpr handle on the number of edges. */ static constexpr vtkIdType NumberOfFaces = 5; /** * static contexpr handle on the maximum face size. It can also be used * to know the number of faces adjacent to one face. */ static constexpr vtkIdType MaximumFaceSize = 4; /** * static constexpr handle on the maximum valence of this cell. * The valence of a vertex is the number of incident edges (or equivalently faces) * to this vertex. It is also equal to the size of a one ring neighborhood of a vertex. */ static constexpr vtkIdType MaximumValence = 3; //@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override { return VTK_WEDGE; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return static_cast(NumberOfEdges); } int GetNumberOfFaces() override { return static_cast(NumberOfFaces); } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int faceId) override; int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; //@} /** * Return the case table for table-based isocontouring (aka marching cubes * style implementations). A linear 3D cell with N vertices will have 2**N * cases. The returned case array lists three edges in order to produce one * output triangle which may be repeated to generate multiple triangles. The * list of cases terminates with a -1 entry. */ static int* GetTriangleCases(int caseId); /** * Return the center of the wedge in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; static void InterpolationFunctions(const double pcoords[3], double weights[6]); static void InterpolationDerivs(const double pcoords[3], double derivs[18]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[6]) override { vtkWedge::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[18]) override { vtkWedge::InterpolationDerivs(pcoords, derivs); } int JacobianInverse(const double pcoords[3], double** inverse, double derivs[18]); //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2); static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(MaximumFaceSize + 1); //@} /** * Static method version of GetEdgeToAdjacentFaces. */ static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2); /** * Static method version of GetFaceToAdjacentFaces. */ static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4); /** * Static method version of GetPointToIncidentEdgesArray. */ static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToIncidentFacesArray. */ static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToOneRingPoints. */ static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetCentroid. */ static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]); protected: vtkWedge(); ~vtkWedge() override; vtkLine* Line; vtkTriangle* Triangle; vtkQuad* Quad; private: vtkWedge(const vtkWedge&) = delete; void operator=(const vtkWedge&) = delete; }; inline int vtkWedge::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 0.333333; pcoords[2] = 0.5; return 0; } #endif