/*========================================================================= Program: Visualization Toolkit Module: vtkTransform.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTransform * @brief describes linear transformations via a 4x4 matrix * * A vtkTransform can be used to describe the full range of linear (also * known as affine) coordinate transformations in three dimensions, * which are internally represented as a 4x4 homogeneous transformation * matrix. When you create a new vtkTransform, it is always initialized * to the identity transformation. *

The SetInput() method allows you to set another transform, * instead of the identity transform, to be the base transformation. * There is a pipeline mechanism to ensure that when the input is * modified, the current transformation will be updated accordingly. * This pipeline mechanism is also supported by the Concatenate() method. *

Most of the methods for manipulating this transformation, * e.g. Translate, Rotate, and Concatenate, can operate in either * PreMultiply (the default) or PostMultiply mode. In PreMultiply * mode, the translation, concatenation, etc. will occur before any * transformations which are represented by the current matrix. In * PostMultiply mode, the additional transformation will occur after * any transformations represented by the current matrix. *

This class performs all of its operations in a right handed * coordinate system with right handed rotations. Some other graphics * libraries use left handed coordinate systems and rotations. * @sa * vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4 * vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter * vtkImageReslice */ #ifndef vtkTransform_h #define vtkTransform_h #include "vtkCommonTransformsModule.h" // For export macro #include "vtkLinearTransform.h" #include "vtkMatrix4x4.h" // Needed for inline methods class VTKCOMMONTRANSFORMS_EXPORT vtkTransform : public vtkLinearTransform { public: static vtkTransform* New(); vtkTypeMacro(vtkTransform, vtkLinearTransform); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Set the transformation to the identity transformation. If * the transform has an Input, then the transformation will be * reset so that it is the same as the Input. */ void Identity(); /** * Invert the transformation. This will also set a flag so that * the transformation will use the inverse of its Input, if an Input * has been set. */ void Inverse() override; //@{ /** * Create a translation matrix and concatenate it with the current * transformation according to PreMultiply or PostMultiply semantics. */ void Translate(double x, double y, double z) { this->Concatenation->Translate(x, y, z); } void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); } void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); } //@} //@{ /** * Create a rotation matrix and concatenate it with the current * transformation according to PreMultiply or PostMultiply semantics. * The angle is in degrees, and (x,y,z) specifies the axis that the * rotation will be performed around. */ void RotateWXYZ(double angle, double x, double y, double z) { this->Concatenation->Rotate(angle, x, y, z); } void RotateWXYZ(double angle, const double axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); } void RotateWXYZ(double angle, const float axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); } //@} //@{ /** * Create a rotation matrix about the X, Y, or Z axis and concatenate * it with the current transformation according to PreMultiply or * PostMultiply semantics. The angle is expressed in degrees. */ void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); } void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); } void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); } //@} //@{ /** * Create a scale matrix (i.e. set the diagonal elements to x, y, z) * and concatenate it with the current transformation according to * PreMultiply or PostMultiply semantics. */ void Scale(double x, double y, double z) { this->Concatenation->Scale(x, y, z); } void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); } void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); } //@} //@{ /** * Set the current matrix directly. Note: First, the current * matrix is set to the identity, then the input matrix is concatenated. */ void SetMatrix(vtkMatrix4x4* matrix) { this->SetMatrix(*matrix->Element); } void SetMatrix(const double elements[16]) { this->Concatenation->Identity(); this->Concatenate(elements); } //@} //@{ /** * Concatenates the matrix with the current transformation according * to PreMultiply or PostMultiply semantics. */ void Concatenate(vtkMatrix4x4* matrix) { this->Concatenate(*matrix->Element); } void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); } //@} /** * Concatenate the specified transform with the current transformation * according to PreMultiply or PostMultiply semantics. * The concatenation is pipelined, meaning that if any of the * transformations are changed, even after Concatenate() is called, * those changes will be reflected when you call TransformPoint(). */ void Concatenate(vtkLinearTransform* transform); /** * Sets the internal state of the transform to PreMultiply. All subsequent * operations will occur before those already represented in the * current transformation. In homogeneous matrix notation, M = M*A where * M is the current transformation matrix and A is the applied matrix. * The default is PreMultiply. */ void PreMultiply() { if (this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); } /** * Sets the internal state of the transform to PostMultiply. All subsequent * operations will occur after those already represented in the * current transformation. In homogeneous matrix notation, M = A*M where * M is the current transformation matrix and A is the applied matrix. * The default is PreMultiply. */ void PostMultiply() { if (!this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); } /** * Get the total number of transformations that are linked into this * one via Concatenate() operations or via SetInput(). */ int GetNumberOfConcatenatedTransforms() { return this->Concatenation->GetNumberOfTransforms() + (this->Input == nullptr ? 0 : 1); } //@{ /** * Get one of the concatenated transformations as a vtkAbstractTransform. * These transformations are applied, in series, every time the * transformation of a coordinate occurs. This method is provided * to make it possible to decompose a transformation into its * constituents, for example to save a transformation to a file. */ vtkLinearTransform* GetConcatenatedTransform(int i) { vtkAbstractTransform* t; if (this->Input == nullptr) { t = this->Concatenation->GetTransform(i); } else if (i < this->Concatenation->GetNumberOfPreTransforms()) { t = this->Concatenation->GetTransform(i); } else if (i > this->Concatenation->GetNumberOfPreTransforms()) { t = this->Concatenation->GetTransform(i - 1); } else if (this->GetInverseFlag()) { t = this->Input->GetInverse(); } else { t = this->Input; } return static_cast(t); } //@} //@{ /** * Get the x, y, z orientation angles from the transformation matrix as an * array of three floating point values. */ void GetOrientation(double orient[3]); void GetOrientation(float orient[3]) { double temp[3]; this->GetOrientation(temp); orient[0] = static_cast(temp[0]); orient[1] = static_cast(temp[1]); orient[2] = static_cast(temp[2]); } double* GetOrientation() VTK_SIZEHINT(3) { this->GetOrientation(this->ReturnValue); return this->ReturnValue; } //@} /** * Convenience function to get the x, y, z orientation angles from * a transformation matrix as an array of three floating point values. */ static void GetOrientation(double orient[3], vtkMatrix4x4* matrix); //@{ /** * Return the wxyz angle+axis representing the current orientation. * The angle is in degrees and the axis is a unit vector. */ void GetOrientationWXYZ(double wxyz[4]); void GetOrientationWXYZ(float wxyz[4]) { double temp[4]; this->GetOrientationWXYZ(temp); wxyz[0] = static_cast(temp[0]); wxyz[1] = static_cast(temp[1]); wxyz[2] = static_cast(temp[2]); wxyz[3] = static_cast(temp[3]); } double* GetOrientationWXYZ() VTK_SIZEHINT(4) { this->GetOrientationWXYZ(this->ReturnValue); return this->ReturnValue; } //@} //@{ /** * Return the position from the current transformation matrix as an array * of three floating point numbers. This is simply returning the translation * component of the 4x4 matrix. */ void GetPosition(double pos[3]); void GetPosition(float pos[3]) { double temp[3]; this->GetPosition(temp); pos[0] = static_cast(temp[0]); pos[1] = static_cast(temp[1]); pos[2] = static_cast(temp[2]); } double* GetPosition() VTK_SIZEHINT(3) { this->GetPosition(this->ReturnValue); return this->ReturnValue; } //@} //@{ /** * Return the scale factors of the current transformation matrix as * an array of three float numbers. These scale factors are not necessarily * about the x, y, and z axes unless unless the scale transformation was * applied before any rotations. */ void GetScale(double scale[3]); void GetScale(float scale[3]) { double temp[3]; this->GetScale(temp); scale[0] = static_cast(temp[0]); scale[1] = static_cast(temp[1]); scale[2] = static_cast(temp[2]); } double* GetScale() VTK_SIZEHINT(3) { this->GetScale(this->ReturnValue); return this->ReturnValue; } //@} /** * Return a matrix which is the inverse of the current transformation * matrix. */ void GetInverse(vtkMatrix4x4* inverse); /** * Return a matrix which is the transpose of the current transformation * matrix. This is equivalent to the inverse if and only if the * transformation is a pure rotation with no translation or scale. */ void GetTranspose(vtkMatrix4x4* transpose); //@{ /** * Set the input for this transformation. This will be used as the * base transformation if it is set. This method allows you to build * a transform pipeline: if the input is modified, then this transformation * will automatically update accordingly. Note that the InverseFlag, * controlled via Inverse(), determines whether this transformation * will use the Input or the inverse of the Input. */ void SetInput(vtkLinearTransform* input); vtkLinearTransform* GetInput() { return this->Input; } //@} /** * Get the inverse flag of the transformation. This controls * whether it is the Input or the inverse of the Input that * is used as the base transformation. The InverseFlag is * flipped every time Inverse() is called. The InverseFlag * is off when a transform is first created. */ int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); } //@{ /** * Pushes the current transformation onto the transformation stack. */ void Push() { if (this->Stack == nullptr) { this->Stack = vtkTransformConcatenationStack::New(); } this->Stack->Push(&this->Concatenation); this->Modified(); } //@} //@{ /** * Deletes the transformation on the top of the stack and sets the top * to the next transformation on the stack. */ void Pop() { if (this->Stack == nullptr) { return; } this->Stack->Pop(&this->Concatenation); this->Modified(); } //@} /** * Check for self-reference. Will return true if concatenating * with the specified transform, setting it to be our inverse, * or setting it to be our input will create a circular reference. * CircuitCheck is automatically called by SetInput(), SetInverse(), * and Concatenate(vtkXTransform *). Avoid using this function, * it is experimental. */ int CircuitCheck(vtkAbstractTransform* transform) override; // Return an inverse transform which will always update itself // to match this transform. vtkAbstractTransform* GetInverse() { return vtkLinearTransform::GetInverse(); } /** * Make a new transform of the same type. */ vtkAbstractTransform* MakeTransform() override; /** * Override GetMTime to account for input and concatenation. */ vtkMTimeType GetMTime() override; //@{ /** * Use this method only if you wish to compute the transformation in * homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). * This method calls this->GetMatrix()->MultiplyPoint(). */ void MultiplyPoint(const float in[4], float out[4]) { this->GetMatrix()->MultiplyPoint(in, out); } void MultiplyPoint(const double in[4], double out[4]) { this->GetMatrix()->MultiplyPoint(in, out); } //@} protected: vtkTransform(); ~vtkTransform() override; void InternalDeepCopy(vtkAbstractTransform* t) override; void InternalUpdate() override; vtkLinearTransform* Input; vtkTransformConcatenation* Concatenation; vtkTransformConcatenationStack* Stack; // this allows us to check whether people have been fooling // around with our matrix vtkMTimeType MatrixUpdateMTime; float Point[4]; double DoublePoint[4]; double ReturnValue[4]; private: vtkTransform(const vtkTransform&) = delete; void operator=(const vtkTransform&) = delete; }; #endif