/*========================================================================= Program: Visualization Toolkit Module: vtkTetra.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkTetra * @brief a 3D cell that represents a tetrahedron * * vtkTetra is a concrete implementation of vtkCell to represent a 3D * tetrahedron. vtkTetra uses the standard isoparametric shape functions * for a linear tetrahedron. The tetrahedron is defined by the four points * (0-3); where (0,1,2) is the base of the tetrahedron which, using the * right hand rule, forms a triangle whose normal points in the direction * of the fourth point. * * @sa * vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge */ #ifndef vtkTetra_h #define vtkTetra_h #include "vtkCell3D.h" #include "vtkCommonDataModelModule.h" // For export macro class vtkLine; class vtkTriangle; class vtkUnstructuredGrid; class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D { public: static vtkTetra* New(); vtkTypeMacro(vtkTetra, vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * See vtkCell3D API for description of these methods. */ void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override; // @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override); vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override; // @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override); void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override; vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override; vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override; vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override; vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override; bool GetCentroid(double centroid[3]) const override; bool IsInsideOut() override; //@} /** * static constexpr handle on the number of points. */ static constexpr vtkIdType NumberOfPoints = 4; /** * static contexpr handle on the number of faces. */ static constexpr vtkIdType NumberOfEdges = 6; /** * static contexpr handle on the number of edges. */ static constexpr vtkIdType NumberOfFaces = 4; /** * static contexpr handle on the maximum face size. It can also be used * to know the number of faces adjacent to one face. */ static constexpr vtkIdType MaximumFaceSize = 3; /** * static constexpr handle on the maximum valence of this cell. * The valence of a vertex is the number of incident edges (or equivalently faces) * to this vertex. It is also equal to the size of a one ring neighborhood of a vertex. */ static constexpr vtkIdType MaximumValence = 3; //@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override { return VTK_TETRA; } int GetNumberOfEdges() override { return 6; } int GetNumberOfFaces() override { return 4; } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int faceId) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* connectivity, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; //@} /** * Return the case table for table-based isocontouring (aka marching cubes * style implementations). A linear 3D cell with N vertices will have 2**N * cases. The returned case array lists three edges in order to produce one * output triangle which may be repeated to generate multiple triangles. The * list of cases terminates with a -1 entry. */ static int* GetTriangleCases(int caseId); /** * Returns the set of points that are on the boundary of the tetrahedron that * are closest parametrically to the point specified. This may include faces, * edges, or vertices. */ int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; /** * Return the center of the tetrahedron in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * Return the distance of the parametric coordinate provided to the * cell. If inside the cell, a distance of zero is returned. */ double GetParametricDistance(const double pcoords[3]) override; /** * Compute the center of the tetrahedron, */ static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Compute the circumcenter (center[3]) and radius squared (method * return value) of a tetrahedron defined by the four points x1, x2, * x3, and x4. */ static double Circumsphere( double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Compute the center (center[3]) and radius (method return value) of * a sphere that just fits inside the faces of a tetrahedron defined * by the four points x1, x2, x3, and x4. */ static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); /** * Given a 3D point x[3], determine the barycentric coordinates of the point. * Barycentric coordinates are a natural coordinate system for simplices that * express a position as a linear combination of the vertices. For a * tetrahedron, there are four barycentric coordinates (because there are * four vertices), and the sum of the coordinates must equal 1. If a * point x is inside a simplex, then all four coordinates will be strictly * positive. If three coordinates are zero (so the fourth =1), then the * point x is on a vertex. If two coordinates are zero, the point x is on an * edge (and so on). In this method, you must specify the vertex coordinates * x1->x4. Returns 0 if tetrahedron is degenerate. */ static int BarycentricCoords( double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]); /** * Compute the volume of a tetrahedron defined by the four points * p1, p2, p3, and p4. */ static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]); /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. Returns 0 if no inverse exists. */ int JacobianInverse(double** inverse, double derivs[12]); static void InterpolationFunctions(const double pcoords[3], double weights[4]); static void InterpolationDerivs(const double pcoords[3], double derivs[12]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[4]) override { vtkTetra::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[12]) override { vtkTetra::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2); static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(3); //@} /** * Static method version of GetEdgeToAdjacentFaces. */ static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2); /** * Static method version of GetFaceToAdjacentFaces. */ static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(3); /** * Static method version of GetPointToIncidentEdgesArray. */ static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToIncidentFacesArray. */ static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToOneRingPoints. */ static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetCentroid. */ static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]); protected: vtkTetra(); ~vtkTetra() override; vtkLine* Line; vtkTriangle* Triangle; private: vtkTetra(const vtkTetra&) = delete; void operator=(const vtkTetra&) = delete; }; inline int vtkTetra::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = pcoords[2] = 0.25; return 0; } #endif