/*========================================================================= Program: Visualization Toolkit Module: vtkSphere.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkSphere * @brief implicit function for a sphere * * vtkSphere computes the implicit function and/or gradient for a sphere. * vtkSphere is a concrete implementation of vtkImplicitFunction. Additional * methods are available for sphere-related computations, such as computing * bounding spheres for a set of points, or set of spheres. */ #ifndef vtkSphere_h #define vtkSphere_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkImplicitFunction.h" class VTKCOMMONDATAMODEL_EXPORT vtkSphere : public vtkImplicitFunction { public: vtkTypeMacro(vtkSphere, vtkImplicitFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Construct sphere with center at (0,0,0) and radius=0.5. */ static vtkSphere* New(); //@{ /** * Evaluate sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2. */ using vtkImplicitFunction::EvaluateFunction; double EvaluateFunction(double x[3]) override; //@} /** * Evaluate sphere gradient. */ void EvaluateGradient(double x[3], double n[3]) override; //@{ /** * Set / get the radius of the sphere. The default is 0.5. */ vtkSetMacro(Radius, double); vtkGetMacro(Radius, double); //@} //@{ /** * Set / get the center of the sphere. The default is (0,0,0). */ vtkSetVector3Macro(Center, double); vtkGetVectorMacro(Center, double, 3); //@} /** * Quick evaluation of the sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2. */ static double Evaluate(double center[3], double R, double x[3]) { return (x[0] - center[0]) * (x[0] - center[0]) + (x[1] - center[1]) * (x[1] - center[1]) + (x[2] - center[2]) * (x[2] - center[2]) - R * R; } //@{ /** * Create a bounding sphere from a set of points. The set of points is * defined by an array of doubles, in the order of x-y-z (which repeats for * each point). An optional hints array provides a guess for the initial * bounding sphere; the two values in the hints array are the two points * expected to be the furthest apart. The output sphere consists of a * center (x-y-z) and a radius. */ static void ComputeBoundingSphere( float* pts, vtkIdType numPts, float sphere[4], vtkIdType hints[2]); static void ComputeBoundingSphere( double* pts, vtkIdType numPts, double sphere[4], vtkIdType hints[2]); //@} //@{ /** * Create a bounding sphere from a set of spheres. The set of input spheres * is defined by an array of pointers to spheres. Each sphere is defined by * the 4-tuple: center(x-y-z)+radius. An optional hints array provides a * guess for the initial bounding sphere; the two values in the hints array * are the two spheres expected to be the furthest apart. The output sphere * consists of a center (x-y-z) and a radius. */ static void ComputeBoundingSphere( float** spheres, vtkIdType numSpheres, float sphere[4], vtkIdType hints[2]); static void ComputeBoundingSphere( double** spheres, vtkIdType numSpheres, double sphere[4], vtkIdType hints[2]); //@} protected: vtkSphere(); ~vtkSphere() override {} double Radius; double Center[3]; private: vtkSphere(const vtkSphere&) = delete; void operator=(const vtkSphere&) = delete; }; #endif