/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticTetra.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkQuadraticTetra * @brief cell represents a parabolic, 10-node isoparametric tetrahedron * * vtkQuadraticTetra is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 10-node, isoparametric parabolic * tetrahedron. The interpolation is the standard finite element, quadratic * isoparametric shape function. The cell includes a mid-edge node on each of * the size edges of the tetrahedron. The ordering of the ten points defining * the cell is point ids (0-3,4-9) where ids 0-3 are the four tetra * vertices; and point ids 4-9 are the midedge nodes between (0,1), (1,2), * (2,0), (0,3), (1,3), and (2,3). * * Note that this class uses an internal linear tessellation for some internal operations * (e.g., clipping and contouring). This means that some artifacts may appear trying to * represent a non-linear interpolation function with linear tets. * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticWedge * vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid */ #ifndef vtkQuadraticTetra_h #define vtkQuadraticTetra_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuadraticTriangle; class vtkTetra; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticTetra : public vtkNonLinearCell { public: static vtkQuadraticTetra* New(); vtkTypeMacro(vtkQuadraticTetra, vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_QUADRATIC_TETRA; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 6; } int GetNumberOfFaces() override { return 4; } vtkCell* GetEdge(int) override; vtkCell* GetFace(int) override; //@} int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Clip this edge using scalar value provided. Like contouring, except * that it cuts the tetra to produce new tetras. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Return the center of the quadratic tetra in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; /** * Return the distance of the parametric coordinate provided to the * cell. If inside the cell, a distance of zero is returned. */ double GetParametricDistance(const double pcoords[3]) override; static void InterpolationFunctions(const double pcoords[3], double weights[10]); static void InterpolationDerivs(const double pcoords[3], double derivs[30]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[10]) override { vtkQuadraticTetra::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[30]) override { vtkQuadraticTetra::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId); static const vtkIdType* GetFaceArray(vtkIdType faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[30]); protected: vtkQuadraticTetra(); ~vtkQuadraticTetra() override; vtkQuadraticEdge* Edge; vtkQuadraticTriangle* Face; vtkTetra* Tetra; vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping private: vtkQuadraticTetra(const vtkQuadraticTetra&) = delete; void operator=(const vtkQuadraticTetra&) = delete; }; #endif