/*========================================================================= Program: Visualization Toolkit Module: vtkQuadraticPyramid.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkQuadraticPyramid * @brief cell represents a parabolic, 13-node isoparametric pyramid * * vtkQuadraticPyramid is a concrete implementation of vtkNonLinearCell to * represent a three-dimensional, 13-node isoparametric parabolic * pyramid. The interpolation is the standard finite element, quadratic * isoparametric shape function. The cell includes a mid-edge node. The * ordering of the thirteen points defining the cell is point ids (0-4,5-12) * where point ids 0-4 are the five corner vertices of the pyramid; followed * by eight midedge nodes (5-12). Note that these midedge nodes lie * on the edges defined by (0,1), (1,2), (2,3), (3,0), (0,4), (1,4), (2,4), * (3,4), respectively. The parametric location of vertex #4 is [0, 0, 1]. * * @sa * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra * vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticWedge * * @par Thanks: * The shape functions and derivatives could be implemented thanks to * the report Pyramid Solid Elements Linear and Quadratic Iso-P Models * From Center For Aerospace Structures */ #ifndef vtkQuadraticPyramid_h #define vtkQuadraticPyramid_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkNonLinearCell.h" class vtkQuadraticEdge; class vtkQuadraticQuad; class vtkQuadraticTriangle; class vtkTetra; class vtkPyramid; class vtkDoubleArray; class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticPyramid : public vtkNonLinearCell { public: static vtkQuadraticPyramid* New(); vtkTypeMacro(vtkQuadraticPyramid, vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * Implement the vtkCell API. See the vtkCell API for descriptions * of these methods. */ int GetCellType() override { return VTK_QUADRATIC_PYRAMID; } int GetCellDimension() override { return 3; } int GetNumberOfEdges() override { return 8; } int GetNumberOfFaces() override { return 5; } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int faceId) override; //@} int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Clip this quadratic triangle using scalar value provided. Like * contouring, except that it cuts the triangle to produce linear * triangles. */ void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) override; /** * Line-edge intersection. Intersection has to occur within [0,1] parametric * coordinates and with specified tolerance. */ int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; /** * Return the center of the quadratic pyramid in parametric coordinates. */ int GetParametricCenter(double pcoords[3]) override; static void InterpolationFunctions(const double pcoords[3], double weights[13]); static void InterpolationDerivs(const double pcoords[3], double derivs[39]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[13]) override { vtkQuadraticPyramid::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[39]) override { vtkQuadraticPyramid::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId); static const vtkIdType* GetFaceArray(vtkIdType faceId); //@} /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[39]); protected: vtkQuadraticPyramid(); ~vtkQuadraticPyramid() override; vtkQuadraticEdge* Edge; vtkQuadraticTriangle* TriangleFace; vtkQuadraticQuad* Face; vtkTetra* Tetra; vtkPyramid* Pyramid; vtkPointData* PointData; vtkCellData* CellData; vtkDoubleArray* CellScalars; vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping //@{ /** * This method adds in a point at the center of the quadrilateral face * and then interpolates values to that point. In order to do this it * also resizes certain member variable arrays. For safety should call * ResizeArrays() after the results of Subdivide() are not needed anymore. **/ void Subdivide( vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars); //@} //@{ /** * Resize the superclasses' member arrays to newSize where newSize should either be * 13 or 14. Call with 13 to reset the reallocation done in the Subdivide() * method or call with 14 to add one extra tuple for the generated point in * Subdivice. For efficiency it only resizes the superclasses' arrays. **/ void ResizeArrays(vtkIdType newSize); //@} private: vtkQuadraticPyramid(const vtkQuadraticPyramid&) = delete; void operator=(const vtkQuadraticPyramid&) = delete; }; //---------------------------------------------------------------------------- // Return the center of the quadratic pyramid in parametric coordinates. // inline int vtkQuadraticPyramid::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 6.0 / 13.0; pcoords[2] = 3.0 / 13.0; return 0; } #endif