/*========================================================================= Program: Visualization Toolkit Module: vtkParametricSuperToroid.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricSuperToroid * @brief Generate a supertoroid. * * vtkParametricSuperToroid generates a supertoroid. Essentially a * supertoroid is a torus with the sine and cosine terms raised to a power. * A supertoroid is a versatile primitive that is controlled by four * parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst * the value of n1 determines the shape of the torus ring and n2 determines * the shape of the cross section of the ring. It is the different values of * these powers which give rise to a family of 3D shapes that are all * basically toroidal in shape. * * For further information about this surface, please consult the * technical description "Parametric surfaces" in http://www.vtk.org/publications * in the "VTK Technical Documents" section in the VTk.org web pages. * * Also see: http://paulbourke.net/geometry/torus/#super. * * @warning * Care needs to be taken specifying the bounds correctly. You may need to * carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. * * @par Thanks: * Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the * class. * */ #ifndef vtkParametricSuperToroid_h #define vtkParametricSuperToroid_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricSuperToroid : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricSuperToroid, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Construct a supertoroid with the following parameters: * MinimumU = 0, MaximumU = 2*Pi, * MinimumV = 0, MaximumV = 2*Pi, * JoinU = 0, JoinV = 0, * TwistU = 0, TwistV = 0, * ClockwiseOrdering = 1, * DerivativesAvailable = 0, * RingRadius = 1, CrossSectionRadius = 0.5, * N1 = 1, N2 = 1, XRadius = 1, * YRadius = 1, ZRadius = 1, a torus in this case. */ static vtkParametricSuperToroid* New(); /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } //@{ /** * Set/Get the radius from the center to the middle of the ring of the * supertoroid. Default is 1. */ vtkSetMacro(RingRadius, double); vtkGetMacro(RingRadius, double); //@} //@{ /** * Set/Get the radius of the cross section of ring of the supertoroid. * Default = 0.5. */ vtkSetMacro(CrossSectionRadius, double); vtkGetMacro(CrossSectionRadius, double); //@} //@{ /** * Set/Get the scaling factor for the x-axis. Default is 1. */ vtkSetMacro(XRadius, double); vtkGetMacro(XRadius, double); //@} //@{ /** * Set/Get the scaling factor for the y-axis. Default is 1. */ vtkSetMacro(YRadius, double); vtkGetMacro(YRadius, double); //@} //@{ /** * Set/Get the scaling factor for the z-axis. Default is 1. */ vtkSetMacro(ZRadius, double); vtkGetMacro(ZRadius, double); //@} //@{ /** * Set/Get the shape of the torus ring. Default is 1. */ vtkSetMacro(N1, double); vtkGetMacro(N1, double); //@} //@{ /** * Set/Get the shape of the cross section of the ring. Default is 1. */ vtkSetMacro(N2, double); vtkGetMacro(N2, double); //@} /** * A supertoroid. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = Du X Dv\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricSuperToroid(); ~vtkParametricSuperToroid() override; // Variables double RingRadius; double CrossSectionRadius; double XRadius; double YRadius; double ZRadius; double N1; double N2; private: vtkParametricSuperToroid(const vtkParametricSuperToroid&) = delete; void operator=(const vtkParametricSuperToroid&) = delete; }; #endif