/*========================================================================= Program: Visualization Toolkit Module: vtkParametricBoy.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkParametricBoy * @brief Generate Boy's surface. * * vtkParametricBoy generates Boy's surface. * This is a Model of the projective plane without singularities. * It was found by Werner Boy on assignment from David Hilbert. * * For further information about this surface, please consult the * technical description "Parametric surfaces" in http://www.vtk.org/publications * in the "VTK Technical Documents" section in the VTk.org web pages. * * @par Thanks: * Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the * class. * */ #ifndef vtkParametricBoy_h #define vtkParametricBoy_h #include "vtkCommonComputationalGeometryModule.h" // For export macro #include "vtkParametricFunction.h" class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricBoy : public vtkParametricFunction { public: vtkTypeMacro(vtkParametricBoy, vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Construct Boy's surface with the following parameters: * MinimumU = 0, MaximumU = Pi, * MinimumV = 0, MaximumV = Pi, * JoinU = 1, JoinV = 1, * TwistU = 1, TwistV = 1; * ClockwiseOrdering = 0, * DerivativesAvailable = 1, * ZScale = 0.125. */ static vtkParametricBoy* New(); /** * Return the parametric dimension of the class. */ int GetDimension() override { return 2; } //@{ /** * Set/Get the scale factor for the z-coordinate. * Default is 1/8, giving a nice shape. */ vtkSetMacro(ZScale, double); vtkGetMacro(ZScale, double); //@} /** * Boy's surface. * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it * as Pt. It also returns the partial derivatives Du and Dv. * \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . * Then the normal is \f$N = Du X Dv\f$ . */ void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override; /** * Calculate a user defined scalar using one or all of uvw, Pt, Duvw. * uvw are the parameters with Pt being the cartesian point, * Duvw are the derivatives of this point with respect to u, v and w. * Pt, Duvw are obtained from Evaluate(). * This function is only called if the ScalarMode has the value * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED * If the user does not need to calculate a scalar, then the * instantiated function should return zero. */ double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override; protected: vtkParametricBoy(); ~vtkParametricBoy() override; // Variables double ZScale; private: vtkParametricBoy(const vtkParametricBoy&) = delete; void operator=(const vtkParametricBoy&) = delete; }; #endif