/*========================================================================= Program: Visualization Toolkit Module: vtkHexahedron.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkHexahedron * @brief a cell that represents a linear 3D hexahedron * * vtkHexahedron is a concrete implementation of vtkCell to represent a * linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron * uses the standard isoparametric shape functions for a linear * hexahedron. The hexahedron is defined by the eight points (0-7) where * (0,1,2,3) is the base of the hexahedron which, using the right hand rule, * forms a quadrilaterial whose normal points in the direction of the * opposite face (4,5,6,7). * * @sa * vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge */ #ifndef vtkHexahedron_h #define vtkHexahedron_h #include "vtkCell3D.h" #include "vtkCommonDataModelModule.h" // For export macro class vtkLine; class vtkQuad; class vtkIncrementalPointLocator; class VTKCOMMONDATAMODEL_EXPORT vtkHexahedron : public vtkCell3D { public: static vtkHexahedron* New(); vtkTypeMacro(vtkHexahedron, vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent) override; //@{ /** * See vtkCell3D API for description of these methods. */ void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override; // @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override); vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override; // @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0 VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override); void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override; vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override; vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override; vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override; vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override; bool GetCentroid(double centroid[3]) const override; bool IsInsideOut() override; //@} /** * static constexpr handle on the number of points. */ static constexpr vtkIdType NumberOfPoints = 8; /** * static contexpr handle on the number of faces. */ static constexpr vtkIdType NumberOfEdges = 12; /** * static contexpr handle on the number of edges. */ static constexpr vtkIdType NumberOfFaces = 6; /** * static contexpr handle on the maximum face size. It can also be used * to know the number of faces adjacent to one face. */ static constexpr vtkIdType MaximumFaceSize = 4; /** * static constexpr handle on the maximum valence of this cell. * The valence of a vertex is the number of incident edges (or equivalently faces) * to this vertex. It is also equal to the size of a one ring neighborhood of a vertex. */ static constexpr vtkIdType MaximumValence = 3; //@{ /** * See the vtkCell API for descriptions of these methods. */ int GetCellType() override { return VTK_HEXAHEDRON; } int GetNumberOfEdges() override { return 12; } int GetNumberOfFaces() override { return 6; } vtkCell* GetEdge(int edgeId) override; vtkCell* GetFace(int faceId) override; int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override; void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override; //@} int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double weights[]) override; void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override; int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) override; int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override; void Derivatives( int subId, const double pcoords[3], const double* values, int dim, double* derivs) override; double* GetParametricCoords() override; /** * Return the case table for table-based isocontouring (aka marching cubes * style implementations). A linear 3D cell with N vertices will have 2**N * cases. The returned case array lists three edges in order to produce one * output triangle which may be repeated to generate multiple triangles. The * list of cases terminates with a -1 entry. */ static int* GetTriangleCases(int caseId); static void InterpolationFunctions(const double pcoords[3], double weights[8]); static void InterpolationDerivs(const double pcoords[3], double derivs[24]); //@{ /** * Compute the interpolation functions/derivatives * (aka shape functions/derivatives) */ void InterpolateFunctions(const double pcoords[3], double weights[8]) override { vtkHexahedron::InterpolationFunctions(pcoords, weights); } void InterpolateDerivs(const double pcoords[3], double derivs[24]) override { vtkHexahedron::InterpolationDerivs(pcoords, derivs); } //@} //@{ /** * Return the ids of the vertices defining edge/face (`edgeId`/`faceId'). * Ids are related to the cell, not to the dataset. * * @note The return type changed. It used to be int*, it is now const vtkIdType*. * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal. */ static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2); static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(4); //@} /** * Static method version of GetEdgeToAdjacentFaces. */ static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2); /** * Static method version of GetFaceToAdjacentFaces. */ static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4); /** * Static method version of GetPointToIncidentEdgesArray. */ static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToIncidentFacesArray. */ static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetPointToOneRingPoints. */ static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3); /** * Static method version of GetCentroid. */ static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]); /** * Given parametric coordinates compute inverse Jacobian transformation * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation * function derivatives. */ void JacobianInverse(const double pcoords[3], double** inverse, double derivs[24]); protected: vtkHexahedron(); ~vtkHexahedron() override; vtkLine* Line; vtkQuad* Quad; private: vtkHexahedron(const vtkHexahedron&) = delete; void operator=(const vtkHexahedron&) = delete; }; #endif