/*========================================================================= Program: Visualization Toolkit Module: vtkGeometricErrorMetric.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkGeometricErrorMetric * @brief Objects that compute * geometry-based error during cell tessellation. * * * It is a concrete error metric, based on a geometric criterium: * the variation of the edge from a straight line. * * @sa * vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric */ #ifndef vtkGeometricErrorMetric_h #define vtkGeometricErrorMetric_h #include "vtkCommonDataModelModule.h" // For export macro #include "vtkGenericSubdivisionErrorMetric.h" class vtkGenericDataSet; class VTKCOMMONDATAMODEL_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric { public: /** * Construct the error metric with a default squared absolute geometric * accuracy equal to 1. */ static vtkGeometricErrorMetric* New(); //@{ /** * Standard VTK type and error macros. */ vtkTypeMacro(vtkGeometricErrorMetric, vtkGenericSubdivisionErrorMetric); void PrintSelf(ostream& os, vtkIndent indent) override; //@} //@{ /** * Return the squared absolute geometric accuracy. See * SetAbsoluteGeometricTolerance() for details. * \post positive_result: result>0 */ vtkGetMacro(AbsoluteGeometricTolerance, double); //@} /** * Set the geometric accuracy with a squared absolute value. * This is the geometric object-based accuracy. * Subdivision will be required if the square distance between the real * point and the straight line passing through the vertices of the edge is * greater than `value'. For instance 0.01 will give better result than 0.1. * \pre positive_value: value>0 */ void SetAbsoluteGeometricTolerance(double value); /** * Set the geometric accuracy with a value relative to the length of the * bounding box of the dataset. Internally compute the absolute tolerance. * For instance 0.01 will give better result than 0.1. * \pre valid_range_value: value>0 && value<1 * \pre ds_exists: ds!=0 */ void SetRelativeGeometricTolerance(double value, vtkGenericDataSet* ds); /** * Does the edge need to be subdivided according to the distance between * the line passing through its endpoints and the mid point? * The edge is defined by its `leftPoint' and its `rightPoint'. * `leftPoint', `midPoint' and `rightPoint' have to be initialized before * calling RequiresEdgeSubdivision(). * Their format is global coordinates, parametric coordinates and * point centered attributes: xyx rst abc de... * `alpha' is the normalized abscissa of the midpoint along the edge. * (close to 0 means close to the left point, close to 1 means close to the * right point) * \pre leftPoint_exists: leftPoint!=0 * \pre midPoint_exists: midPoint!=0 * \pre rightPoint_exists: rightPoint!=0 * \pre clamped_alpha: alpha>0 && alpha<1 * \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) * =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 */ int RequiresEdgeSubdivision( double* leftPoint, double* midPoint, double* rightPoint, double alpha) override; /** * Return the error at the mid-point. It will return an error relative to * the bounding box size if GetRelative() is true, a square absolute error * otherwise. * See RequiresEdgeSubdivision() for a description of the arguments. * \pre leftPoint_exists: leftPoint!=0 * \pre midPoint_exists: midPoint!=0 * \pre rightPoint_exists: rightPoint!=0 * \pre clamped_alpha: alpha>0 && alpha<1 * \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint) * =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6 * \post positive_result: result>=0 */ double GetError(double* leftPoint, double* midPoint, double* rightPoint, double alpha) override; /** * Return the type of output of GetError() */ int GetRelative(); protected: vtkGeometricErrorMetric(); ~vtkGeometricErrorMetric() override; /** * Square distance between a straight line (defined by points x and y) * and a point z. Property: if x and y are equal, the line is a point and * the result is the square distance between points x and z. */ double Distance2LinePoint(double x[3], double y[3], double z[3]); double AbsoluteGeometricTolerance; double SmallestSize; int Relative; // Control the type of output of GetError() private: vtkGeometricErrorMetric(const vtkGeometricErrorMetric&) = delete; void operator=(const vtkGeometricErrorMetric&) = delete; }; #endif