/*========================================================================= Program: Visualization Toolkit Module: vtkFlyingEdges3D.h Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /** * @class vtkFlyingEdges3D * @brief generate isosurface from 3D image data (volume) * * vtkFlyingEdges3D is a reference implementation of the 3D version of the * flying edges algorithm. It is designed to be highly scalable (i.e., * parallelizable) for large data. It implements certain performance * optimizations including computational trimming to rapidly eliminate * processing of data regions, packed bit representation of case table * values, single edge intersection, elimination of point merging, and * elimination of any reallocs (due to dynamic data insertion). Note that * computational trimming is a method to reduce total computational cost in * which partial computational results can be used to eliminate future * computations. * * This is a four-pass algorithm. The first pass processes all x-edges and * builds x-edge case values (which, when the four x-edges defining a voxel * are combined, are equivalent to vertex-based case table except edge-based * approaches are separable in support of parallel computing). Next x-voxel * rows are processed to gather information from yz-edges (basically to count * the number of y-z edge intersections and triangles generated). In the third * pass a prefix sum is used to count and allocate memory for the output * primitives. Finally in the fourth pass output primitives are generated into * pre-allocated arrays. This implementation uses voxel cell axes (a x-y-z * triad located at the voxel origin) to ensure that each edge is intersected * at most one time. Note that this implementation also reuses the VTK * Marching Cubes case table, although the vertex-based MC table is * transformed into an edge-based table on object instantiation. * * See the paper "Flying Edges: A High-Performance Scalable Isocontouring * Algorithm" by Schroeder, Maynard, Geveci. Proc. of LDAV 2015. Chicago, IL. * * @warning * This filter is specialized to 3D volumes. This implementation can produce * degenerate triangles (i.e., zero-area triangles). * * @warning * If you are interested in extracting segmented regions from a label mask, * consider using vtkDiscreteFlyingEdges3D. * * @warning * This class has been threaded with vtkSMPTools. Using TBB or other * non-sequential type (set in the CMake variable * VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly. * * @sa * vtkContourFilter vtkFlyingEdges2D vtkSynchronizedTemplates3D * vtkMarchingCubes vtkDiscreteFlyingEdges3D vtkContour3DLinearGrid */ #ifndef vtkFlyingEdges3D_h #define vtkFlyingEdges3D_h #include "vtkContourValues.h" // Passes calls through #include "vtkFiltersCoreModule.h" // For export macro #include "vtkPolyDataAlgorithm.h" class vtkImageData; class VTKFILTERSCORE_EXPORT vtkFlyingEdges3D : public vtkPolyDataAlgorithm { public: static vtkFlyingEdges3D* New(); vtkTypeMacro(vtkFlyingEdges3D, vtkPolyDataAlgorithm); void PrintSelf(ostream& os, vtkIndent indent) override; /** * Because we delegate to vtkContourValues. */ vtkMTimeType GetMTime() override; //@{ /** * Set/Get the computation of normals. Normal computation is fairly * expensive in both time and storage. If the output data will be processed * by filters that modify topology or geometry, it may be wise to turn * Normals and Gradients off. */ vtkSetMacro(ComputeNormals, vtkTypeBool); vtkGetMacro(ComputeNormals, vtkTypeBool); vtkBooleanMacro(ComputeNormals, vtkTypeBool); //@} //@{ /** * Set/Get the computation of gradients. Gradient computation is fairly * expensive in both time and storage. Note that if ComputeNormals is on, * gradients will have to be calculated, but will not be stored in the * output dataset. If the output data will be processed by filters that * modify topology or geometry, it may be wise to turn Normals and * Gradients off. */ vtkSetMacro(ComputeGradients, vtkTypeBool); vtkGetMacro(ComputeGradients, vtkTypeBool); vtkBooleanMacro(ComputeGradients, vtkTypeBool); //@} //@{ /** * Set/Get the computation of scalars. */ vtkSetMacro(ComputeScalars, vtkTypeBool); vtkGetMacro(ComputeScalars, vtkTypeBool); vtkBooleanMacro(ComputeScalars, vtkTypeBool); //@} //@{ /** * Indicate whether to interpolate other attribute data. That is, as the * isosurface is generated, interpolate all point attribute data across * the edge. This is independent of scalar interpolation, which is * controlled by the ComputeScalars flag. */ vtkSetMacro(InterpolateAttributes, vtkTypeBool); vtkGetMacro(InterpolateAttributes, vtkTypeBool); vtkBooleanMacro(InterpolateAttributes, vtkTypeBool); //@} /** * Set a particular contour value at contour number i. The index i ranges * between 0<=iContourValues->SetValue(i, value); } /** * Get the ith contour value. */ double GetValue(int i) { return this->ContourValues->GetValue(i); } /** * Get a pointer to an array of contour values. There will be * GetNumberOfContours() values in the list. */ double* GetValues() { return this->ContourValues->GetValues(); } /** * Fill a supplied list with contour values. There will be * GetNumberOfContours() values in the list. Make sure you allocate * enough memory to hold the list. */ void GetValues(double* contourValues) { this->ContourValues->GetValues(contourValues); } /** * Set the number of contours to place into the list. You only really * need to use this method to reduce list size. The method SetValue() * will automatically increase list size as needed. */ void SetNumberOfContours(int number) { this->ContourValues->SetNumberOfContours(number); } /** * Get the number of contours in the list of contour values. */ vtkIdType GetNumberOfContours() { return this->ContourValues->GetNumberOfContours(); } /** * Generate numContours equally spaced contour values between specified * range. Contour values will include min/max range values. */ void GenerateValues(int numContours, double range[2]) { this->ContourValues->GenerateValues(numContours, range); } /** * Generate numContours equally spaced contour values between specified * range. Contour values will include min/max range values. */ void GenerateValues(int numContours, double rangeStart, double rangeEnd) { this->ContourValues->GenerateValues(numContours, rangeStart, rangeEnd); } //@{ /** * Set/get which component of the scalar array to contour on; defaults to 0. */ vtkSetMacro(ArrayComponent, int); vtkGetMacro(ArrayComponent, int); //@} protected: vtkFlyingEdges3D(); ~vtkFlyingEdges3D() override; vtkTypeBool ComputeNormals; vtkTypeBool ComputeGradients; vtkTypeBool ComputeScalars; vtkTypeBool InterpolateAttributes; int ArrayComponent; vtkContourValues* ContourValues; int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override; int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override; int FillInputPortInformation(int port, vtkInformation* info) override; private: vtkFlyingEdges3D(const vtkFlyingEdges3D&) = delete; void operator=(const vtkFlyingEdges3D&) = delete; }; #endif