You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

156 lines
5.8 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticTetra.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticTetra
* @brief cell represents a parabolic, 10-node isoparametric tetrahedron
*
* vtkQuadraticTetra is a concrete implementation of vtkNonLinearCell to
* represent a three-dimensional, 10-node, isoparametric parabolic
* tetrahedron. The interpolation is the standard finite element, quadratic
* isoparametric shape function. The cell includes a mid-edge node on each of
* the size edges of the tetrahedron. The ordering of the ten points defining
* the cell is point ids (0-3,4-9) where ids 0-3 are the four tetra
* vertices; and point ids 4-9 are the midedge nodes between (0,1), (1,2),
* (2,0), (0,3), (1,3), and (2,3).
*
* Note that this class uses an internal linear tessellation for some internal operations
* (e.g., clipping and contouring). This means that some artifacts may appear trying to
* represent a non-linear interpolation function with linear tets.
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticWedge
* vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid
*/
#ifndef vtkQuadraticTetra_h
#define vtkQuadraticTetra_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuadraticTriangle;
class vtkTetra;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticTetra : public vtkNonLinearCell
{
public:
static vtkQuadraticTetra* New();
vtkTypeMacro(vtkQuadraticTetra, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_TETRA; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 6; }
int GetNumberOfFaces() override { return 4; }
vtkCell* GetEdge(int) override;
vtkCell* GetFace(int) override;
//@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this edge using scalar value provided. Like contouring, except
* that it cuts the tetra to produce new tetras.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Return the center of the quadratic tetra in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(const double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[10]);
static void InterpolationDerivs(const double pcoords[3], double derivs[30]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[10]) override
{
vtkQuadraticTetra::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[30]) override
{
vtkQuadraticTetra::InterpolationDerivs(pcoords, derivs);
}
//@}
//@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
static const vtkIdType* GetFaceArray(vtkIdType faceId);
//@}
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[30]);
protected:
vtkQuadraticTetra();
~vtkQuadraticTetra() override;
vtkQuadraticEdge* Edge;
vtkQuadraticTriangle* Face;
vtkTetra* Tetra;
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
private:
vtkQuadraticTetra(const vtkQuadraticTetra&) = delete;
void operator=(const vtkQuadraticTetra&) = delete;
};
#endif