You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
5.8 KiB
C
184 lines
5.8 KiB
C
3 weeks ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: vtkPlane.h
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
/**
|
||
|
* @class vtkPlane
|
||
|
* @brief perform various plane computations
|
||
|
*
|
||
|
* vtkPlane provides methods for various plane computations. These include
|
||
|
* projecting points onto a plane, evaluating the plane equation, and
|
||
|
* returning plane normal. vtkPlane is a concrete implementation of the
|
||
|
* abstract class vtkImplicitFunction.
|
||
|
*/
|
||
|
|
||
|
#ifndef vtkPlane_h
|
||
|
#define vtkPlane_h
|
||
|
|
||
|
#include "vtkCommonDataModelModule.h" // For export macro
|
||
|
#include "vtkImplicitFunction.h"
|
||
|
|
||
|
class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction
|
||
|
{
|
||
|
public:
|
||
|
/**
|
||
|
* Construct plane passing through origin and normal to z-axis.
|
||
|
*/
|
||
|
static vtkPlane* New();
|
||
|
|
||
|
vtkTypeMacro(vtkPlane, vtkImplicitFunction);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Evaluate plane equation for point x[3].
|
||
|
*/
|
||
|
using vtkImplicitFunction::EvaluateFunction;
|
||
|
void EvaluateFunction(vtkDataArray* input, vtkDataArray* output) override;
|
||
|
double EvaluateFunction(double x[3]) override;
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Evaluate function gradient at point x[3].
|
||
|
*/
|
||
|
void EvaluateGradient(double x[3], double g[3]) override;
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Set/get plane normal. Plane is defined by point and normal.
|
||
|
*/
|
||
|
vtkSetVector3Macro(Normal, double);
|
||
|
vtkGetVectorMacro(Normal, double, 3);
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Set/get point through which plane passes. Plane is defined by point
|
||
|
* and normal.
|
||
|
*/
|
||
|
vtkSetVector3Macro(Origin, double);
|
||
|
vtkGetVectorMacro(Origin, double, 3);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Translate the plane in the direction of the normal by the
|
||
|
* distance specified. Negative values move the plane in the
|
||
|
* opposite direction.
|
||
|
*/
|
||
|
void Push(double distance);
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Project a point x onto plane defined by origin and normal. The
|
||
|
* projected point is returned in xproj. NOTE : normal assumed to
|
||
|
* have magnitude 1.
|
||
|
*/
|
||
|
static void ProjectPoint(
|
||
|
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
|
||
|
void ProjectPoint(const double x[3], double xproj[3]);
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Project a vector v onto plane defined by origin and normal. The
|
||
|
* projected vector is returned in vproj.
|
||
|
*/
|
||
|
static void ProjectVector(
|
||
|
const double v[3], const double origin[3], const double normal[3], double vproj[3]);
|
||
|
void ProjectVector(const double v[3], double vproj[3]);
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Project a point x onto plane defined by origin and normal. The
|
||
|
* projected point is returned in xproj. NOTE : normal does NOT have to
|
||
|
* have magnitude 1.
|
||
|
*/
|
||
|
static void GeneralizedProjectPoint(
|
||
|
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
|
||
|
void GeneralizedProjectPoint(const double x[3], double xproj[3]);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Quick evaluation of plane equation n(x-origin)=0.
|
||
|
*/
|
||
|
static double Evaluate(double normal[3], double origin[3], double x[3]);
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Return the distance of a point x to a plane defined by n(x-p0) = 0. The
|
||
|
* normal n[3] must be magnitude=1.
|
||
|
*/
|
||
|
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
|
||
|
double DistanceToPlane(double x[3]);
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Given a line defined by the two points p1,p2; and a plane defined by the
|
||
|
* normal n and point p0, compute an intersection. The parametric
|
||
|
* coordinate along the line is returned in t, and the coordinates of
|
||
|
* intersection are returned in x. A zero is returned if the plane and line
|
||
|
* do not intersect between (0<=t<=1). If the plane and line are parallel,
|
||
|
* zero is returned and t is set to VTK_LARGE_DOUBLE.
|
||
|
*/
|
||
|
static int IntersectWithLine(
|
||
|
const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3]);
|
||
|
int IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3]);
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Given two planes, one infinite and one finite, defined by the normal n
|
||
|
* and point o (infinite plane), and the second finite plane1 defined by
|
||
|
* the three points (pOrigin,px,py), compute a line of intersection (if
|
||
|
* any). The line of intersection is defined by the return values
|
||
|
* (x0,x1). If there is no intersection, then zero is returned; otherwise
|
||
|
* non-zero. There are two variants of this method. The static function
|
||
|
* operates on the supplied function parameters; the non-static operates on
|
||
|
* this instance of vtkPlane (and its associated origin and normal).
|
||
|
*/
|
||
|
static int IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
|
||
|
double py[3], double x0[3], double x1[3]);
|
||
|
int IntersectWithFinitePlane(
|
||
|
double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]);
|
||
|
//@}
|
||
|
|
||
|
protected:
|
||
|
vtkPlane();
|
||
|
~vtkPlane() override {}
|
||
|
|
||
|
double Normal[3];
|
||
|
double Origin[3];
|
||
|
|
||
|
private:
|
||
|
vtkPlane(const vtkPlane&) = delete;
|
||
|
void operator=(const vtkPlane&) = delete;
|
||
|
};
|
||
|
|
||
|
// Generally the normal should be normalized
|
||
|
inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3])
|
||
|
{
|
||
|
return normal[0] * (x[0] - origin[0]) + normal[1] * (x[1] - origin[1]) +
|
||
|
normal[2] * (x[2] - origin[2]);
|
||
|
}
|
||
|
|
||
|
// Assumes normal is normalized
|
||
|
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
|
||
|
{
|
||
|
#define vtkPlaneAbs(x) ((x) < 0 ? -(x) : (x))
|
||
|
return (vtkPlaneAbs(n[0] * (x[0] - p0[0]) + n[1] * (x[1] - p0[1]) + n[2] * (x[2] - p0[2])));
|
||
|
}
|
||
|
|
||
|
#endif
|