You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

219 lines
6.0 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkMatrix3x3.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkMatrix3x3
* @brief represent and manipulate 3x3 transformation matrices
*
* vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices.
* Specifically, it is designed to work on 3x3 transformation matrices
* found in 2D rendering using homogeneous coordinates [x y w].
*
* @sa
* vtkTransform2D
*/
#ifndef vtkMatrix3x3_h
#define vtkMatrix3x3_h
#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"
class VTKCOMMONMATH_EXPORT vtkMatrix3x3 : public vtkObject
{
// Some of the methods in here have a corresponding static (class)
// method taking a pointer to 9 doubles that constitutes a user
// supplied matrix. This allows C++ clients to allocate double arrays
// on the stack and manipulate them using vtkMatrix3x3 methods.
// This is an alternative to allowing vtkMatrix3x3 instances to be
// created on the stack (which is frowned upon) or doing lots of
// temporary heap allocation within vtkTransform2D methods,
// which is inefficient.
public:
/**
* Construct a 3x3 identity matrix.
*/
static vtkMatrix3x3* New();
vtkTypeMacro(vtkMatrix3x3, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set the elements of the matrix to the same values as the elements
* of the source Matrix.
*/
void DeepCopy(vtkMatrix3x3* source)
{
vtkMatrix3x3::DeepCopy(*this->Element, source);
this->Modified();
}
static void DeepCopy(double elements[9], vtkMatrix3x3* source)
{
vtkMatrix3x3::DeepCopy(elements, *source->Element);
}
static void DeepCopy(double elements[9], const double newElements[9]);
/**
* Non-static member function. Assigns *from* elements array
*/
void DeepCopy(const double elements[9])
{
this->DeepCopy(*this->Element, elements);
this->Modified();
}
/**
* Set all of the elements to zero.
*/
void Zero()
{
vtkMatrix3x3::Zero(*this->Element);
this->Modified();
}
static void Zero(double elements[9]);
/**
* Set equal to Identity matrix
*/
void Identity()
{
vtkMatrix3x3::Identity(*this->Element);
this->Modified();
}
static void Identity(double elements[9]);
/**
* Matrix Inversion (adapted from Richard Carling in "Graphics Gems,"
* Academic Press, 1990).
*/
static void Invert(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Invert(*in->Element, *out->Element);
out->Modified();
}
void Invert() { vtkMatrix3x3::Invert(this, this); }
static void Invert(const double inElements[9], double outElements[9]);
/**
* Transpose the matrix and put it into out.
*/
static void Transpose(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Transpose(*in->Element, *out->Element);
out->Modified();
}
void Transpose() { vtkMatrix3x3::Transpose(this, this); }
static void Transpose(const double inElements[9], double outElements[9]);
/**
* Multiply a homogeneous coordinate by this matrix, i.e. out = A*in.
* The in[3] and out[3] can be the same array.
*/
void MultiplyPoint(const float in[3], float out[3])
{
vtkMatrix3x3::MultiplyPoint(*this->Element, in, out);
}
void MultiplyPoint(const double in[3], double out[3])
{
vtkMatrix3x3::MultiplyPoint(*this->Element, in, out);
}
static void MultiplyPoint(const double elements[9], const float in[3], float out[3]);
static void MultiplyPoint(const double elements[9], const double in[3], double out[3]);
/**
* Multiplies matrices a and b and stores the result in c (c=a*b).
*/
static void Multiply3x3(vtkMatrix3x3* a, vtkMatrix3x3* b, vtkMatrix3x3* c)
{
vtkMatrix3x3::Multiply3x3(*a->Element, *b->Element, *c->Element);
}
static void Multiply3x3(const double a[9], const double b[9], double c[9]);
/**
* Compute adjoint of the matrix and put it into out.
*/
void Adjoint(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Adjoint(*in->Element, *out->Element);
}
static void Adjoint(const double inElements[9], double outElements[9]);
/**
* Compute the determinant of the matrix and return it.
*/
double Determinant() { return vtkMatrix3x3::Determinant(*this->Element); }
static double Determinant(const double elements[9]);
/**
* Sets the element i,j in the matrix.
*/
void SetElement(int i, int j, double value);
/**
* Returns the element i,j from the matrix.
*/
double GetElement(int i, int j) const { return this->Element[i][j]; }
// Descption:
// Returns true if this matrix is equal to the identity matrix.
bool IsIdentity();
/**
* Return a pointer to the first element of the matrix (double[9]).
*/
double* GetData() { return *this->Element; }
/**
* Return a pointer to the first element of the matrix (double[9]).
*/
const double* GetData() const { return *this->Element; }
protected:
vtkMatrix3x3();
~vtkMatrix3x3() override;
double Element[3][3]; // The elements of the 3x3 matrix
private:
vtkMatrix3x3(const vtkMatrix3x3&) = delete;
void operator=(const vtkMatrix3x3&) = delete;
};
inline void vtkMatrix3x3::SetElement(int i, int j, double value)
{
if (this->Element[i][j] != value)
{
this->Element[i][j] = value;
this->Modified();
}
}
inline bool vtkMatrix3x3::IsIdentity()
{
double* M = *this->Element;
if (M[0] == 1.0 && M[4] == 1.0 && M[8] == 1.0 && M[1] == 0.0 && M[2] == 0.0 && M[3] == 0.0 &&
M[5] == 0.0 && M[6] == 0.0 && M[7] == 0.0)
{
return true;
}
else
{
return false;
}
}
#endif