You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

215 lines
7.9 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkGenericCellTessellator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkGenericCellTessellator
* @brief helper class to perform cell tessellation
*
* vtkGenericCellTessellator is a helper class to perform adaptive tessellation
* of particular cell topologies. The major purpose for this class is to
* transform higher-order cell types (e.g., higher-order finite elements)
* into linear cells that can then be easily visualized by VTK. This class
* works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
* classes.
*
* This algorithm is based on edge subdivision. An error metric along each
* edge is evaluated, and if the error is greater than some tolerance, the
* edge is subdivided (as well as all connected 2D and 3D cells). The process
* repeats until the error metric is satisfied.
*
* A significant issue addressed by this algorithm is to insure face
* compatibility across neighboring cells. That is, diagonals due to face
* triangulation must match to insure that the mesh is compatible. The
* algorithm employs a precomputed table to accelerate the tessellation
* process. The table was generated with the help of vtkOrderedTriangulator;
* the basic idea is that the choice of diagonal is made by considering the
* relative value of the point ids.
*/
#ifndef vtkGenericCellTessellator_h
#define vtkGenericCellTessellator_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"
class vtkCellArray;
class vtkDoubleArray;
class vtkCollection;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkGenericDataSet;
//-----------------------------------------------------------------------------
//
// The tessellation object
class VTKCOMMONDATAMODEL_EXPORT vtkGenericCellTessellator : public vtkObject
{
public:
vtkTypeMacro(vtkGenericCellTessellator, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Tessellate a face of a 3D `cell'. The face is specified by the
* index value.
* The result is a set of smaller linear triangles in `cellArray' with
* `points' and point data `internalPd'.
* \pre cell_exists: cell!=0
* \pre valid_dimension: cell->GetDimension()==3
* \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
* \pre att_exists: att!=0
* \pre points_exists: points!=0
* \pre cellArray_exists: cellArray!=0
* \pre internalPd_exists: internalPd!=0
*/
virtual void TessellateFace(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
vtkIdType index, vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
/**
* Tessellate a 3D `cell'. The result is a set of smaller linear
* tetrahedra in `cellArray' with `points' and point data `internalPd'.
* \pre cell_exists: cell!=0
* \pre valid_dimension: cell->GetDimension()==3
* \pre att_exists: att!=0
* \pre points_exists: points!=0
* \pre cellArray_exists: cellArray!=0
* \pre internalPd_exists: internalPd!=0
*/
virtual void Tessellate(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
/**
* Triangulate a 2D `cell'. The result is a set of smaller linear triangles
* in `cellArray' with `points' and point data `internalPd'.
* \pre cell_exists: cell!=0
* \pre valid_dimension: cell->GetDimension()==2
* \pre att_exists: att!=0
* \pre points_exists: points!=0
* \pre cellArray_exists: cellArray!=0
* \pre internalPd_exists: internalPd!=0
*/
virtual void Triangulate(vtkGenericAdaptorCell* cell, vtkGenericAttributeCollection* att,
vtkDoubleArray* points, vtkCellArray* cellArray, vtkPointData* internalPd) = 0;
//@{
/**
* Specify the list of error metrics used to decide if an edge has to be
* split or not. It is a collection of vtkGenericSubdivisionErrorMetric-s.
*/
virtual void SetErrorMetrics(vtkCollection* someErrorMetrics);
vtkGetObjectMacro(ErrorMetrics, vtkCollection);
//@}
/**
* Initialize the tessellator with a data set `ds'.
*/
virtual void Initialize(vtkGenericDataSet* ds) = 0;
/**
* Init the error metric with the dataset. Should be called in each filter
* before any tessellation of any cell.
*/
void InitErrorMetrics(vtkGenericDataSet* ds);
//@{
/**
* If true, measure the quality of the fixed subdivision.
*/
vtkGetMacro(Measurement, int);
vtkSetMacro(Measurement, int);
//@}
/**
* Get the maximum error measured after the fixed subdivision.
* \pre errors_exists: errors!=0
* \pre valid_size: sizeof(errors)==GetErrorMetrics()->GetNumberOfItems()
*/
void GetMaxErrors(double* errors);
protected:
vtkGenericCellTessellator();
~vtkGenericCellTessellator() override;
/**
* Does the edge need to be subdivided according to at least one error
* metric? The edge is defined by its `leftPoint' and its `rightPoint'.
* `leftPoint', `midPoint' and `rightPoint' have to be initialized before
* calling RequiresEdgeSubdivision().
* Their format is global coordinates, parametric coordinates and
* point centered attributes: xyx rst abc de...
* `alpha' is the normalized abscissa of the midpoint along the edge.
* (close to 0 means close to the left point, close to 1 means close to the
* right point)
* \pre leftPoint_exists: leftPoint!=0
* \pre midPoint_exists: midPoint!=0
* \pre rightPoint_exists: rightPoint!=0
* \pre clamped_alpha: alpha>0 && alpha<1
* \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
* =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
*/
int RequiresEdgeSubdivision(double* left, double* mid, double* right, double alpha);
/**
* Update the max error of each error metric according to the error at the
* mid-point. The type of error depends on the state
* of the concrete error metric. For instance, it can return an absolute
* or relative error metric.
* See RequiresEdgeSubdivision() for a description of the arguments.
* \pre leftPoint_exists: leftPoint!=0
* \pre midPoint_exists: midPoint!=0
* \pre rightPoint_exists: rightPoint!=0
* \pre clamped_alpha: alpha>0 && alpha<1
* \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
* =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
*/
virtual void UpdateMaxError(
double* leftPoint, double* midPoint, double* rightPoint, double alpha);
/**
* Reset the maximal error of each error metric. The purpose of the maximal
* error is to measure the quality of a fixed subdivision.
*/
void ResetMaxErrors();
/**
* List of error metrics. Collection of vtkGenericSubdivisionErrorMetric
*/
vtkCollection* ErrorMetrics;
/**
* Send the current cell to error metrics. Should be called at the beginning
* of the implementation of Tessellate(), Triangulate()
* or TessellateFace()
* \pre cell_exists: cell!=0
*/
void SetGenericCell(vtkGenericAdaptorCell* cell);
/**
* Dataset to be tessellated.
*/
vtkGenericDataSet* DataSet;
int Measurement; // if true, measure the quality of the fixed subdivision.
double* MaxErrors; // max error for each error metric, for measuring the
// quality of a fixed subdivision.
int MaxErrorsCapacity;
private:
vtkGenericCellTessellator(const vtkGenericCellTessellator&) = delete;
void operator=(const vtkGenericCellTessellator&) = delete;
};
#endif