You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

136 lines
4.9 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkCubicLine.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkCubicLine
* @brief cell represents a cubic , isoparametric 1D line
*
* vtkCubicLine is a concrete implementation of vtkNonLinearCell to represent a 1D Cubic line.
* The Cubic Line is the 4 nodes isoparametric parabolic line . The
* interpolation is the standard finite element, cubic isoparametric
* shape function. The cell includes two mid-edge nodes. The ordering of the
* four points defining the cell is point ids (0,1,2,3) where id #2 and #3 are the
* mid-edge nodes. Please note that the parametric coordinates lie between -1 and 1
* in accordance with most standard documentations.
* @par Thanks:
* <verbatim>
* This file has been developed by Oxalya - www.oxalya.com
* Copyright (c) EDF - www.edf.fr
* </verbatim>
*/
#ifndef vtkCubicLine_h
#define vtkCubicLine_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkLine;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkCubicLine : public vtkNonLinearCell
{
public:
static vtkCubicLine* New();
vtkTypeMacro(vtkCubicLine, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() override { return VTK_CUBIC_LINE; }
int GetCellDimension() override { return 1; }
int GetNumberOfEdges() override { return 0; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int) override { return nullptr; }
vtkCell* GetFace(int) override { return nullptr; }
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
//@}
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(const double pcoords[3]) override;
/**
* Clip this line using scalar value provided. Like contouring, except
* that it cuts the line to produce other lines.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Return the center of the triangle in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
/**
* Line-line intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
static void InterpolationFunctions(const double pcoords[3], double weights[4]);
static void InterpolationDerivs(const double pcoords[3], double derivs[4]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[4]) override
{
vtkCubicLine::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[4]) override
{
vtkCubicLine::InterpolationDerivs(pcoords, derivs);
}
//@}
protected:
vtkCubicLine();
~vtkCubicLine() override;
vtkLine* Line;
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
private:
vtkCubicLine(const vtkCubicLine&) = delete;
void operator=(const vtkCubicLine&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkCubicLine::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = pcoords[2] = 0.0;
return 0;
}
#endif