You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
6.3 KiB
C
165 lines
6.3 KiB
C
3 weeks ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: vtkBiQuadraticQuadraticWedge.h
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
/**
|
||
|
* @class vtkBiQuadraticQuadraticWedge
|
||
|
* @brief cell represents a parabolic, 18-node isoparametric wedge
|
||
|
*
|
||
|
* vtkBiQuadraticQuadraticWedge is a concrete implementation of vtkNonLinearCell to
|
||
|
* represent a three-dimensional, 18-node isoparametric biquadratic
|
||
|
* wedge. The interpolation is the standard finite element,
|
||
|
* biquadratic-quadratic isoparametric shape function plus the linear functions.
|
||
|
* The cell includes a mid-edge node. The
|
||
|
* ordering of the 18 points defining the cell is point ids (0-5,6-15, 16-18)
|
||
|
* where point ids 0-5 are the six corner vertices of the wedge; followed by
|
||
|
* nine midedge nodes (6-15) and 3 center-face nodes. Note that these midedge
|
||
|
* nodes correspond lie
|
||
|
* on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3),
|
||
|
* (1,4), (2,5), and the center-face nodes are laying in quads 16-(0,1,4,3),
|
||
|
* 17-(1,2,5,4) and (2,0,3,5).
|
||
|
*
|
||
|
* @sa
|
||
|
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
|
||
|
* vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid
|
||
|
*
|
||
|
* @par Thanks:
|
||
|
* Thanks to Soeren Gebbert who developed this class and
|
||
|
* integrated it into VTK 5.0.
|
||
|
*/
|
||
|
|
||
|
#ifndef vtkBiQuadraticQuadraticWedge_h
|
||
|
#define vtkBiQuadraticQuadraticWedge_h
|
||
|
|
||
|
#include "vtkCommonDataModelModule.h" // For export macro
|
||
|
#include "vtkNonLinearCell.h"
|
||
|
|
||
|
class vtkQuadraticEdge;
|
||
|
class vtkBiQuadraticQuad;
|
||
|
class vtkQuadraticTriangle;
|
||
|
class vtkWedge;
|
||
|
class vtkDoubleArray;
|
||
|
|
||
|
class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticWedge : public vtkNonLinearCell
|
||
|
{
|
||
|
public:
|
||
|
static vtkBiQuadraticQuadraticWedge* New();
|
||
|
vtkTypeMacro(vtkBiQuadraticQuadraticWedge, vtkNonLinearCell);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Implement the vtkCell API. See the vtkCell API for descriptions
|
||
|
* of these methods.
|
||
|
*/
|
||
|
int GetCellType() override { return VTK_BIQUADRATIC_QUADRATIC_WEDGE; }
|
||
|
int GetCellDimension() override { return 3; }
|
||
|
int GetNumberOfEdges() override { return 9; }
|
||
|
int GetNumberOfFaces() override { return 5; }
|
||
|
vtkCell* GetEdge(int edgeId) override;
|
||
|
vtkCell* GetFace(int faceId) override;
|
||
|
//@}
|
||
|
|
||
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
||
|
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
||
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
||
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
||
|
int EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3],
|
||
|
double& dist2, double* weights) override;
|
||
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
||
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
||
|
void Derivatives(
|
||
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
||
|
double* GetParametricCoords() override;
|
||
|
|
||
|
/**
|
||
|
* Clip this quadratic Wedge using scalar value provided. Like
|
||
|
* contouring, except that it cuts the hex to produce linear
|
||
|
* tetrahedron.
|
||
|
*/
|
||
|
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
||
|
vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
|
||
|
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
|
||
|
|
||
|
/**
|
||
|
* Line-edge intersection. Intersection has to occur within [0,1] parametric
|
||
|
* coordinates and with specified tolerance.
|
||
|
*/
|
||
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
||
|
double pcoords[3], int& subId) override;
|
||
|
|
||
|
/**
|
||
|
* Return the center of the quadratic wedge in parametric coordinates.
|
||
|
*/
|
||
|
int GetParametricCenter(double pcoords[3]) override;
|
||
|
|
||
|
static void InterpolationFunctions(const double pcoords[3], double weights[15]);
|
||
|
static void InterpolationDerivs(const double pcoords[3], double derivs[45]);
|
||
|
//@{
|
||
|
/**
|
||
|
* Compute the interpolation functions/derivatives
|
||
|
* (aka shape functions/derivatives)
|
||
|
*/
|
||
|
void InterpolateFunctions(const double pcoords[3], double weights[15]) override
|
||
|
{
|
||
|
vtkBiQuadraticQuadraticWedge::InterpolationFunctions(pcoords, weights);
|
||
|
}
|
||
|
void InterpolateDerivs(const double pcoords[3], double derivs[45]) override
|
||
|
{
|
||
|
vtkBiQuadraticQuadraticWedge::InterpolationDerivs(pcoords, derivs);
|
||
|
}
|
||
|
//@}
|
||
|
//@{
|
||
|
/**
|
||
|
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
|
||
|
* Ids are related to the cell, not to the dataset.
|
||
|
*
|
||
|
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
|
||
|
* This is so ids are unified between vtkCell and vtkPoints.
|
||
|
*/
|
||
|
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
|
||
|
static const vtkIdType* GetFaceArray(vtkIdType faceId);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Given parametric coordinates compute inverse Jacobian transformation
|
||
|
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
|
||
|
* function derivatives.
|
||
|
*/
|
||
|
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[45]);
|
||
|
|
||
|
protected:
|
||
|
vtkBiQuadraticQuadraticWedge();
|
||
|
~vtkBiQuadraticQuadraticWedge() override;
|
||
|
|
||
|
vtkQuadraticEdge* Edge;
|
||
|
vtkQuadraticTriangle* TriangleFace;
|
||
|
vtkBiQuadraticQuad* Face;
|
||
|
vtkWedge* Wedge;
|
||
|
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
|
||
|
|
||
|
private:
|
||
|
vtkBiQuadraticQuadraticWedge(const vtkBiQuadraticQuadraticWedge&) = delete;
|
||
|
void operator=(const vtkBiQuadraticQuadraticWedge&) = delete;
|
||
|
};
|
||
|
//----------------------------------------------------------------------------
|
||
|
// Return the center of the quadratic wedge in parametric coordinates.
|
||
|
inline int vtkBiQuadraticQuadraticWedge::GetParametricCenter(double pcoords[3])
|
||
|
{
|
||
|
pcoords[0] = pcoords[1] = 1. / 3;
|
||
|
pcoords[2] = 0.5;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif
|