You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.3 KiB
C
185 lines
6.3 KiB
C
3 weeks ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: vtkBiQuadraticQuadraticHexahedron.h
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
/**
|
||
|
* @class vtkBiQuadraticQuadraticHexahedron
|
||
|
* @brief cell represents a biquadratic,
|
||
|
* 24-node isoparametric hexahedron
|
||
|
*
|
||
|
* vtkBiQuadraticQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
|
||
|
* represent a three-dimensional, 24-node isoparametric biquadratic
|
||
|
* hexahedron. The interpolation is the standard finite element,
|
||
|
* biquadratic-quadratic
|
||
|
* isoparametric shape function. The cell includes mid-edge and center-face nodes. The
|
||
|
* ordering of the 24 points defining the cell is point ids (0-7,8-19, 20-23)
|
||
|
* where point ids 0-7 are the eight corner vertices of the cube; followed by
|
||
|
* twelve midedge nodes (8-19), nodes 20-23 are the center-face nodes. Note that
|
||
|
* these midedge nodes correspond lie
|
||
|
* on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
|
||
|
* (7,4), (0,4), (1,5), (2,6), (3,7). The center face nodes laying in quad
|
||
|
* 22-(0,1,5,4), 21-(1,2,6,5), 23-(2,3,7,6) and 22-(3,0,4,7)
|
||
|
*
|
||
|
* \verbatim
|
||
|
*
|
||
|
* top
|
||
|
* 7--14--6
|
||
|
* | |
|
||
|
* 15 13
|
||
|
* | |
|
||
|
* 4--12--5
|
||
|
*
|
||
|
* middle
|
||
|
* 19--23--18
|
||
|
* | |
|
||
|
* 20 21
|
||
|
* | |
|
||
|
* 16--22--17
|
||
|
*
|
||
|
* bottom
|
||
|
* 3--10--2
|
||
|
* | |
|
||
|
* 11 9
|
||
|
* | |
|
||
|
* 0-- 8--1
|
||
|
*
|
||
|
* \endverbatim
|
||
|
*
|
||
|
*
|
||
|
* @sa
|
||
|
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
|
||
|
* vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
|
||
|
*
|
||
|
* @par Thanks:
|
||
|
* Thanks to Soeren Gebbert who developed this class and
|
||
|
* integrated it into VTK 5.0.
|
||
|
*/
|
||
|
|
||
|
#ifndef vtkBiQuadraticQuadraticHexahedron_h
|
||
|
#define vtkBiQuadraticQuadraticHexahedron_h
|
||
|
|
||
|
#include "vtkCommonDataModelModule.h" // For export macro
|
||
|
#include "vtkNonLinearCell.h"
|
||
|
|
||
|
class vtkQuadraticEdge;
|
||
|
class vtkQuadraticQuad;
|
||
|
class vtkBiQuadraticQuad;
|
||
|
class vtkHexahedron;
|
||
|
class vtkDoubleArray;
|
||
|
|
||
|
class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticHexahedron : public vtkNonLinearCell
|
||
|
{
|
||
|
public:
|
||
|
static vtkBiQuadraticQuadraticHexahedron* New();
|
||
|
vtkTypeMacro(vtkBiQuadraticQuadraticHexahedron, vtkNonLinearCell);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent) override;
|
||
|
|
||
|
//@{
|
||
|
/**
|
||
|
* Implement the vtkCell API. See the vtkCell API for descriptions
|
||
|
* of these methods.
|
||
|
*/
|
||
|
int GetCellType() override { return VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON; }
|
||
|
int GetCellDimension() override { return 3; }
|
||
|
int GetNumberOfEdges() override { return 12; }
|
||
|
int GetNumberOfFaces() override { return 6; }
|
||
|
vtkCell* GetEdge(int) override;
|
||
|
vtkCell* GetFace(int) override;
|
||
|
//@}
|
||
|
|
||
|
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
|
||
|
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
||
|
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
|
||
|
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
|
||
|
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
|
||
|
double& dist2, double weights[]) override;
|
||
|
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
|
||
|
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
|
||
|
void Derivatives(
|
||
|
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
|
||
|
double* GetParametricCoords() override;
|
||
|
|
||
|
/**
|
||
|
* Clip this biquadratic hexahedron using scalar value provided. Like
|
||
|
* contouring, except that it cuts the hex to produce linear
|
||
|
* tetrahedron.
|
||
|
*/
|
||
|
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
|
||
|
vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
|
||
|
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
|
||
|
|
||
|
/**
|
||
|
* Line-edge intersection. Intersection has to occur within [0,1] parametric
|
||
|
* coordinates and with specified tolerance.
|
||
|
*/
|
||
|
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
|
||
|
double pcoords[3], int& subId) override;
|
||
|
|
||
|
static void InterpolationFunctions(const double pcoords[3], double weights[24]);
|
||
|
static void InterpolationDerivs(const double pcoords[3], double derivs[72]);
|
||
|
//@{
|
||
|
/**
|
||
|
* Compute the interpolation functions/derivatives
|
||
|
* (aka shape functions/derivatives)
|
||
|
*/
|
||
|
void InterpolateFunctions(const double pcoords[3], double weights[24]) override
|
||
|
{
|
||
|
vtkBiQuadraticQuadraticHexahedron::InterpolationFunctions(pcoords, weights);
|
||
|
}
|
||
|
void InterpolateDerivs(const double pcoords[3], double derivs[72]) override
|
||
|
{
|
||
|
vtkBiQuadraticQuadraticHexahedron::InterpolationDerivs(pcoords, derivs);
|
||
|
}
|
||
|
//@}
|
||
|
//@{
|
||
|
/**
|
||
|
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
|
||
|
* Ids are related to the cell, not to the dataset.
|
||
|
*
|
||
|
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
|
||
|
* This is so ids are unified between vtkCell and vtkPoints.
|
||
|
*/
|
||
|
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
|
||
|
static const vtkIdType* GetFaceArray(vtkIdType faceId);
|
||
|
//@}
|
||
|
|
||
|
/**
|
||
|
* Given parametric coordinates compute inverse Jacobian transformation
|
||
|
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
|
||
|
* function derivatives.
|
||
|
*/
|
||
|
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[72]);
|
||
|
|
||
|
protected:
|
||
|
vtkBiQuadraticQuadraticHexahedron();
|
||
|
~vtkBiQuadraticQuadraticHexahedron() override;
|
||
|
|
||
|
vtkQuadraticEdge* Edge;
|
||
|
vtkQuadraticQuad* Face;
|
||
|
vtkBiQuadraticQuad* BiQuadFace;
|
||
|
vtkHexahedron* Hex;
|
||
|
vtkPointData* PointData;
|
||
|
vtkCellData* CellData;
|
||
|
vtkDoubleArray* CellScalars;
|
||
|
vtkDoubleArray* Scalars;
|
||
|
|
||
|
void Subdivide(
|
||
|
vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars);
|
||
|
|
||
|
private:
|
||
|
vtkBiQuadraticQuadraticHexahedron(const vtkBiQuadraticQuadraticHexahedron&) = delete;
|
||
|
void operator=(const vtkBiQuadraticQuadraticHexahedron&) = delete;
|
||
|
};
|
||
|
|
||
|
#endif
|