You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123 lines
3.8 KiB
C

/*=========================================================================
Program: Visualization Toolkit
Module: vtkSphere.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkSphere
* @brief implicit function for a sphere
*
* vtkSphere computes the implicit function and/or gradient for a sphere.
* vtkSphere is a concrete implementation of vtkImplicitFunction. Additional
* methods are available for sphere-related computations, such as computing
* bounding spheres for a set of points, or set of spheres.
*/
#ifndef vtkSphere_h
#define vtkSphere_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkImplicitFunction.h"
class VTKCOMMONDATAMODEL_EXPORT vtkSphere : public vtkImplicitFunction
{
public:
vtkTypeMacro(vtkSphere, vtkImplicitFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Construct sphere with center at (0,0,0) and radius=0.5.
*/
static vtkSphere* New();
//@{
/**
* Evaluate sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2.
*/
using vtkImplicitFunction::EvaluateFunction;
double EvaluateFunction(double x[3]) override;
//@}
/**
* Evaluate sphere gradient.
*/
void EvaluateGradient(double x[3], double n[3]) override;
//@{
/**
* Set / get the radius of the sphere. The default is 0.5.
*/
vtkSetMacro(Radius, double);
vtkGetMacro(Radius, double);
//@}
//@{
/**
* Set / get the center of the sphere. The default is (0,0,0).
*/
vtkSetVector3Macro(Center, double);
vtkGetVectorMacro(Center, double, 3);
//@}
/**
* Quick evaluation of the sphere equation ((x-x0)^2 + (y-y0)^2 + (z-z0)^2) - R^2.
*/
static double Evaluate(double center[3], double R, double x[3])
{
return (x[0] - center[0]) * (x[0] - center[0]) + (x[1] - center[1]) * (x[1] - center[1]) +
(x[2] - center[2]) * (x[2] - center[2]) - R * R;
}
//@{
/**
* Create a bounding sphere from a set of points. The set of points is
* defined by an array of doubles, in the order of x-y-z (which repeats for
* each point). An optional hints array provides a guess for the initial
* bounding sphere; the two values in the hints array are the two points
* expected to be the furthest apart. The output sphere consists of a
* center (x-y-z) and a radius.
*/
static void ComputeBoundingSphere(
float* pts, vtkIdType numPts, float sphere[4], vtkIdType hints[2]);
static void ComputeBoundingSphere(
double* pts, vtkIdType numPts, double sphere[4], vtkIdType hints[2]);
//@}
//@{
/**
* Create a bounding sphere from a set of spheres. The set of input spheres
* is defined by an array of pointers to spheres. Each sphere is defined by
* the 4-tuple: center(x-y-z)+radius. An optional hints array provides a
* guess for the initial bounding sphere; the two values in the hints array
* are the two spheres expected to be the furthest apart. The output sphere
* consists of a center (x-y-z) and a radius.
*/
static void ComputeBoundingSphere(
float** spheres, vtkIdType numSpheres, float sphere[4], vtkIdType hints[2]);
static void ComputeBoundingSphere(
double** spheres, vtkIdType numSpheres, double sphere[4], vtkIdType hints[2]);
//@}
protected:
vtkSphere();
~vtkSphere() override {}
double Radius;
double Center[3];
private:
vtkSphere(const vtkSphere&) = delete;
void operator=(const vtkSphere&) = delete;
};
#endif